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Background and motivation (1/2) - 1/17 -

• The core and peripheral plasmas are strongly coupled with each other in
tokamaks. The particle and heat fluxes from the core determine the behavior of
the peripheral plasma, while the latter determines the edge density and temperature,
boundary conditions of the core plasma.

• The transport in the core and the peripheral regions have been analyzed
separately until recently owing to the difference of modeling configurations.

◦ In the core region of tokamaks

– By the use of flux-surface averaging, transport is 1D problem.

– A standard transport modeling is based on
the neoclassical transport theory and turbulent transport theory

◦ In the peripheral region of tokamaks

– By the use of simplified transport models, transport is 2D problem.

– A standard transport modeling is based on
the Braginskii’s equations and turbulent transport theory
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Background and motivation (2/2) - 2/17 -

• Integrated core-peripheral transport simulations by 1.5D core transport code
and 2D peripheral transport code

◦ Quantities obtained by a core transport simulation lack poloidal dependence in
the edge region.

◦ In the case of H-mode plasmas, Braginskii’s equations are not suitable in the
edge region, since the plasma temperature becomes a few keV and the plasma
becomes weakly collisional.

• For more consistent core-peripheral transport simulation

◦ Two-dimensional transport modeling based on the neoclassical transport theory
and turbulent transport theory applicable to both core and peripheral region
are desirable.

We have formulated an axisymmetric two-dimensional transport model
applicable to both the core and peripheral regions and are developing a

two-dimensional transport code TASK/T2.
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Assumptions and Coordinates - 3/17 -

• Assumptions

◦ Two-dimensional MHD equilibrium

– Spacial variation of quantities are two-dimensional

◦ Relaxation processes much slower than the Alfvén time scale

– Time dependence of basis vector is negligible in the transport time scale

◦ Radial force balance in the transport time scale

• Coordinates

◦ Magnetic surface coordinate (MSC): (ρ, χ, ζ)
– Axisymmetric magnetic field in MSC: B = ∇ζ × ∇ψ + I∇ζ

◦ Transport oriented coordinate (TOC): (ρ, ‖, ζ)

We employ MSC to express spatial variations of quantities
and TOC to express components of vector quantities

for compatibility with neoclassical (NC) transport and peripheral transport theory
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Multi-fluid equations - 4/17 -

• Multi-fluid equations
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• Definition of higher moment quantities in each equation
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Modeling of collision terms and viscosity tensors - 5/17 -

• Collision terms

◦ Friction and Heat friction force:
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• Viscosity tensors: Only parallel viscosity tensors are taken into account
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◦ These expressions are equivalent to that of the Hirshman’s moment
approach in the limit of equilibrium return flows
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2D transport equations in tokamak (1/3) - 6/17 -

• Equation for particle transport
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◦ Since the time derivative of radial momentum is O(δ3), the lowest order radial
force balance O(δ0) is assumed for simplicity as previously indicated.
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2D transport equations in tokamak (2/3) - 7/17 -

• Equation for toroidal momentum transport
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• Equation for internal energy transport
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2D transport equations in tokamak (3/3) - 8/17 -

• Equation for EW force balance in radial direction
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• Equation for parallel total heat flux transport
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Relation to conventional neoclassical transport model (1/2) - 9/17 -

• Flux averaged parallel force and EW force balance up to O(δ)
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• Equilibrium return flows inside the last closed flux surface
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◦ ωua and ωqa are the toroidal angular frequencies

◦ Lua and Lqa are the quantities related to poloidal flows.
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Relation to conventional neoclassical transport model (2/2) - 10/17 -

• Flux averaged parallel flow in equilibrium return flow limit
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• Matrix equation for poloidal rotations in our transport model
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◦ This expression is equivalent to matrix equation for poloidal rotations in the
conventional neoclassical transport theory
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Electromagnetic equations - 11/17 -

• Evolution equatoin for Bχ: (Bχ =
√
gdψ/dρ)
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Code design of TASK/T2 - 12/17 -

• Time evolution algorithm

1. Grid construction step

◦ TASK/T2
◦ Grid generation in MSC

2. Equilibrium calculation step

◦ TASK/EQU
◦ Grad-Shafranov Eq.
◦ Metrics calculation

3. Time evolution step

◦ TASK/T2, TASK/MTXP
◦ Multi-fluid Eqs., EM Eqs.
◦ Calculation of time evolu-

tion of plasma

Multi-Fluid Eqs.
EM Eqs. w/o GS eq.

Grad-Sharfanov Eq. with FCT

Grid Construction Step

Next Time Step?
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Time
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STOP
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Concept of Grid construction - 13/17 -

Magnetic Surface 
Coordinate System RϕZ Coordinate System

χ

ρ

Z

R

• Desirable grid property for two-dimensional transport analysis

◦ Good separation of the parallel and perpendicular fluxes
– Rectangular grid whose sides are parallel or perpendicular to axes of MSC

◦ Uniform poloidal resolution in real space
– Hierarchical structure that becomes gradually finer at greater ρ region

◦ High flexibility of radial grid width
– Radial grid width can be easily changed if grid is structural

Hierarchical rectangular grid in MSC is employed in TASK/T2
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Example of Grid construction - 14/17 -

• Example of grid construction for limiter configuration

◦ Hierarchical grid generation in cylindrical coordinate

◦ Number of elements: 37590

– Core region (0.0 ≤ r ≤ 1.0):
Number of radial partitions: 100, Number of poloidal partitions: 6-384

– Peripheral region (1.0 ≤ r ≤ 1.1):
Number of radial partitions: 50, Number of poloidal partitions: 384
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Concept of Grid for Single-Null Divertor - 15/17 -

• Sub-domains of Single-null grid

◦ Core domain:
ρ ∈ [0, 1], χ ∈ [0, 2π]

◦ SOL domain:
ρ ∈ [1, ρSOL

wall ], χ ∈ [χin, χout]
◦ Private domain:
ρ ∈ [ρPRV

wall , 1], χ ∈ [χin, 0]
ρ ∈ [ρPRV

wall , 1], χ ∈ [2π, χout]
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G
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G
2
(ρ, χ)

G
3
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• Each sub-domain has different mapping function from MSC to RϕZ system
• Continuity between sub-domains at separatrix (ρ = 1, χin ≤ χ ≤ χout)

◦ 0 ≤ χ ≤ 2π: core and SOL domain
◦ χin ≤ χ ≤ 0 and 2π ≤ χ ≤ χout: SOL and private domain

• Periodic conditions ( 0 ≤ ρ ≤ 1, χ = 0, 2π)
◦ 0 ≤ ρ ≤ 1, χ = +0, 2π − 0: for core domain
◦ ρPRV

wall ≤ ρ ≤ 1, χ = −0, 2π + 0: for private domain
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Specification of transport equation solver - 16/17 -

• Governing equation: Simultaneous Advection-Diffusion equation

• Discretization scheme: Finite Element Method

◦ Stabilization scheme: SUPG-FEM

◦ Element type: Structured bi-linear rectangular element

• Time-advancing scheme: Full implicit

• Nonlinear calculation scheme: Picard iteration

• Matrix solver: TASK/MTXP

◦ Parallel solver: PETSc (Iterative method), MUMPS (direct method)

◦ Serial solver: Gauss elimination for band matrix

• Visualization: Paraview
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Summary and Future work - 17/17 -

• Summary

◦ A set of equations required for 2D transport modeling of tokamak plasmas has
been derived.

– 2D transport equations have been derived from multi-fluid equations with
neoclassical viscosity in MSC.

– The neoclassical parallel viscosity and heat viscosity have been extended
in order to be applicable in the open field region outside the last closed
flux surface.

• Future works

◦ Developing the two-dimensional transport code TASK/T2

◦ Modeling of 2D momentum and heat flux transport due to the turbulent electric
field based on quasi-linear transport theory

◦ 2D core and peripheral transport analysis of tokamaks with limiter configura-
tions as a preliminary step to divertor configurations
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