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Introduction

- Turbulent transport properties can be strongly affected by the plasma shaping effects,
through the change of the linear frequencies, mode-structures, and trapped/passing boundary.
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- Implementation of realistic shaped MHD-equilibrium to gyrokinetic code is useful for analyzing
plasma shape effects, and for validation/prediction study against experiments.

---> |n this study, tokamak equilibria calculated by a free-boundary 2D Grad-Shafranov solver
MEUDAS are incorporated into a local fluxtube gyrokinetic code GKV.

---> Micro-stability and zonal flow generation in several equilibria on JT-60SA are investigated.




Current status of GKV code
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- Local fluxtube 5D gyrokinetic solver, originally developed by [T. -H. Watanabe, NF2000]
---> Solving the evolution of delta-f in 5D phase space

---> Eulerian (or Vlasov) solver: spectral in 2D k-space,
Finite-Difference in 3D (z, v, y)-space

---> Electro-static, Electro-magnetic, Arbitrary numbers of species
---> Helical geometries from VMEC, Tokamak geometries from MEUDAS(this talk)

---> Entropy balance/transfer diagnostics
[T. -H. Watanabe PRL2008, M. Nunami PFR2011, M. Nakata PoP2012, S. Maeyama CPC2013]
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Advanced parallelization towards PETA/EXA computing

- 5D domain-decompositions with MP| and Thread parallelization with OPENMP
Decomposition in (z, v|, M) 4+ Decomposition in k-space (kx or ky) 4+ Species
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- Parallel 2D FFT (including data-transpose) for the nonlinear ExB advection term is
the most time-consuming.
---> Segmented 3D rank-allocation technique (for MESH/TORUS network)

---> Communication/Computation Overlap technique (for FFT and/or FD)
[ S. Maeyama, JSST2012 Y. [domura, SC2012 ]




Fantastic scaling over 0.6M cores on K computer

Problem size for Multi-scale turbulence simulations (e.g. ITG-ETG)
N,=1024, N,=1024, N,=128, N,=64, N =32 ~ 274 billion grids
P,=8-64, P,=16, P,=8, P, =4, 8 threads > 600 thousand cores
Effects of Rank-Mapping and Overlap Strong scaling on K computer
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Fantastic scalability over 0.6Mcores has been achieved with 99.99994% efficiency.
---> Multi-scale/Multi-species turbulence simulation is now accessible with GKV.
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Gyrokinetic equation in flux coordinates

- Gyrokinetic and Poisson equations: electro-static limit, multi-species

- Fluxtube coordinates (z, ¥, z) defined by general SFL flux coordinates (p, ¢, ¢):
coordinates: = = cz(p—po), ¥y =cylq(p)0 — (], z =106
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U = ¥(p) : poloidal flux
magnetic field: B = ¢,V x Vy, ¢, = ¥/c,c, ® = ®(p) : toroidal flux
Jacobian: V3,,. = (V& x Vy-V2)~' = (cz¢y) ™ /3 ¢
Serivai .g_ia q(p)d 0 8__i8 8_8+()g
. do p dq
safety factor and magnetic shear: ¢(p) = a0’ $(p) = =—

~qdp




Gyrokinetic equation in flux coordinates

- Metric tensor
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- Advection operators in general forms for arbitrary flux coordinate systems:
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---> Only B-intensity, and its derivatives, and the contra-variant metric components are necessary
to calculate these operators.




Construction of SFL flux coordinates from MEUDAS

Data flow

MEUDAS (developed in JAEA)

[ZD Free-boundary Grad-Shafranov solver
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( Constructing Axisymmetric, Hamada, )
. and Boozer coordinates
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Turbulence simulation

B = Blp,6], dB/dp, dB/d0

Co-variant metric components are calculated by

OROR 0Z 9Z _,0¢ ¢
Jij = 8?14 8uj + 8’&2 (9Uj + & 8uz 8uj
U; = {pa 07 C}

, then converted to contra-variant components.




\erification of flux coordinates with solovev equilibrium

- Analytic expression of solovev equilibrium with finite elongation, triangularity, and up-down asymmetry:
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\erification of flux coordinates with solovev equilibrium

- Consistency is verified by the following analytical expressions:

OR[p,0] _ /90p(R,Z) = H R4 2P VZ
00 R 07 07

Relative error to analytical expressions
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All the constructed coordinate systems show sufficient accuracy(up to ~10-8) for turbulent
transport analyses.
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Application to realistic plasmas on JI-60SA
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- Two L-mode plasmas are considered (The MHD stability has been well investigated: N. Aiba PFR2007 ):
ITER-like plasma with single null: “/T” Highly-Shaped plasma with quasi double null: “HS”
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- Field aligned structures in shaped plasmas deviate from those in circular plasmas (outer sides).
- Stronger asymmetry in k? for ITER-like plasma than that in Highly-Shaped plasma.




Trapped/Passing boundaries

IT: ITER-like, HS: Highly shaped
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- More sharp boundary, but less trapped region for shaped plasmas compared with circular ones.

---> Strong impacts on TG with kinetic elec. and TEM turbulence dynamics.




Linear ITG mode stability for the ITER-like plasma

g- and s-profiles
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ITG-ae mode spectra
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Linear ITG mode stabillity for the Highly-Shaped plasma
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- ITG mode growth rates in Highly-shaped case is slightly lower than those in the ITER-like cases.




Geometric dependence of residual zonal flow levels

1 . . . : :
Circular(IT) —
0.8 .
0.6 —_
< 04
302
S of
0.2
04
0.6
0 10 20 30 40 50 60
Time t [R,,/v;;]
02 | | Clircular(I"ll“) —
IT:p=025 —
>
2 =~ - -
&3
N
cg 0.1 B /__\
S
g T
0=0.25
0 ' . ' 1
0 0.2 04 0.6 0.8 1

kxpti

O(O/p(t=0)

Residual ZF level

IT: ITER-like, HS: Highly shaped
1 .

" Circular(IT) —
0.8 IT:p=0.5 — I
0.6 HS:p=05 — -

R-H

20 30 40
Time t [R,,/v;;]

- Shaping effects in [T- and HS- plasmas lead to
---> significant enhancement of residual zonal flow levels

---> stronger kx- (or kr-) dependence compared with circular plasmas.
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Nonlinear simulation and entropy balance

ent. balance (non-zonal part)
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entropy variable

dosS b col. dissipation
- Jtl’bXT — T+ Dtrb
(flux) x (thermo. force)
dl‘ - Tzf + DZf

- The entropy balance relations
are well satisfied both in the
non-zonal and zonal parts.
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Nonlinear zonal flow generation

IT: ITER-like, HS: Highly shaped
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Snapshots of the potential fluctuation

- As is expected by linear ZF-damping analyses, more efficient
/ZF generation is observed in the nonlinear phase of the Highly-
Shaped case.

- Stronger kx-dependence of Z/T is also identified in the Highly-
Shaped case. (Z: ZF-intensity, T: turbulence intensity)

---> Qualitative features on the amplitude and kx-dependence are

1 well agreed with linear results shown in the previous slides.




Towards the transport moaeling

- ITG turbulence simulations on LHD show that the ion heat diffusivity well scales with T/Z2 | and

GK-simulation-based transport model including zonal-flow effects has been developed.

[M. Nunami PoP2012, 2013]
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Scallng on LHD [M. Nunami PoP2012] and JT-60SA | Turbulence speotra
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- Good scaling between xi and T/Z'2 is also observed in JT-60SA case.
- Turbulence spectra near the peak region are well characterized with linear spectra, YITG/kﬁ.

---> Promising to construct the similar reduced transport model produced by the
linear spectra and residual ZF levels. (currently underway...)




Summary

- An interface code to generate flux coordinates system from realistic plasma equilibria calculated by
free-boundary 2D Grad-Shafranov solver MEUDAS is successfully implemented to a local fluxtube
code GKV.

- The accuracy of the flux coordinates, i.e., Axisymmetric, Boozer, and Hamada, are verified with an
analytical solovev equilibrium model.

- Linear ITG-ae stability (ae: adiabatic electrons) is investigated for two types of shaped plasmas in
JT-60SA, i.e., ITER-like plasma(IT) and Highly shaped one(HS), then the difference from the
concentric circular equilibrium, which is conventionally used in gyrokinetic code, has been clarified.

---> Highly-shaped configuration shows less ITG-driven transport than that in the standard ITER-like
configuration, due to stronger generation of zonal flows.

---> The turbulent ion heat diffusivity well scales with T/Z"2, which suggests the applicability of a GK-
simulation based transport model.

More detailed analyses including a multi-species/scales stability analysis, nonlinear simulations, and
constructing the GK-based transport model are in progress.
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