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Introduction
- Turbulent transport properties can be strongly affected by the plasma shaping effects, 
through the change of the linear frequencies, mode-structures, and trapped/passing boundary.   

  

Enhanced residual-ZF levels by plasma 
elongation: Analytic analyses for Solove’v 
like equilibrium.     Xiao and Catto, PoP2006 

Impact of the negative triangularity 
on stabilization of TEMs: global-GK 
analyses for TCV shape. 
               Camenen et al., NF2007 
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- Implementation of realistic shaped MHD-equilibrium to gyrokinetic code is useful for analyzing 
plasma shape effects, and for validation/prediction study against experiments.   
---> In this study, tokamak equilibria calculated by a free-boundary 2D Grad-Shafranov solver 
MEUDAS are incorporated into a local fluxtube gyrokinetic code GKV.  
---> Micro-stability and zonal flow generation in several equilibria on JT-60SA are investigated. 



Current status of GKV code

- Local fluxtube 5D gyrokinetic solver, originally developed by [T. -H. Watanabe, NF2006]
--->  Solving the evolution of delta-f in 5D phase space
--->  Eulerian (or Vlasov) solver: spectral in 2D k-space, 
Finite-Difference in 3D (z, v||, μ)-space 

--->  Helical geometries from VMEC, Tokamak geometries from MEUDAS(this talk)
--->  Electro-static, Electro-magnetic, Arbitrary numbers of species   

--->  Entropy balance/transfer diagnostics
                    [T. -H. Watanabe PRL2008, M. Nunami PFR2011, M. Nakata PoP2012, S. Maeyama CPC2013]

- GKV code is now ready for 
turbulence simulations of 
burning plasmas composed 
of D, T, e, He-ash, C, W, etc. 

fluxtube 

<--- Tokamak 
ITG 

Helical ITG 
             --->

↑Tokamak 
ETG 
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Advanced parallelization towards PETA/EXA computing
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Data transpose� 1D#FFT�

kx�

ky�

1D#FFT� often degrades 
scalability. 

+Decomposition in (z, v||, μ)    Decomposition in k-space (kx or ky)   + Species   
- 5D domain-decompositions with MPI and Thread parallelization with OPENMP 

- Parallel 2D FFT (including data-transpose) for the nonlinear ExB advection term is 
the most time-consuming.  

---> Segmented 3D rank-allocation technique (for MESH/TORUS network)
---> Communication/Computation Overlap technique (for FFT and/or FD)

+

For each species 

[ S. Maeyama, JSST2012  Y. Idomura, SC2012 ]



Fantastic scaling over 0.6M cores on K computer 
4
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Effects of Rank-Mapping and Overlap Strong scaling on K computer

Nx=1024, Ny=1024, Nz=128, Nv=64, Nµ=32  �� 274 billion grids 
Pk=8-64, Pz=16, Pv=8, Pµ=4, 8 threads        >   600 thousand cores 

Problem size for Multi-scale turbulence simulations (e.g. ITG-ETG)        

Fantastic scalability over 0.6Mcores has been achieved with 99.99994% efficiency.      
---> Multi-scale/Multi-species turbulence simulation is now accessible with GKV.         

[ S. Maeyama, SC2013]
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Gyrokinetic equation in flux coordinates

k2?�⇤k? = 4⇥
X

s

es

Z
dvJ0s�fsk? � ns0

es�⇤k?

Ts
(1� �0s)

�


@

@t
+ vkb ·r+ ik? · vds �

µ

ms
b ·rB

@

@vk

�
�fsk? +N (�fsk? , � sk?)

= FMs

⇥
ik? · v⇤Ts � ik? · vds � vkb ·r

⇤ es� sk?

Ts
+ Cs(hsk?)

- Gyrokinetic and Poisson equations: electro-static limit, multi-species 

- Fluxtube coordinates              defined by general SFL flux coordinates            :  
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Gyrokinetic equation in flux coordinates

- Metric tensor

- Advection operators in general forms for arbitrary flux coordinate systems:   
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---> Only B-intensity, and its derivatives, and the contra-variant metric components are necessary 
to calculate these operators.   
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Construction of SFL flux coordinates from MEUDAS

2D Free-boundary Grad-Shafranov solver 
MEUDAS (developed in JAEA)

Interpolation, tracing flux surfaces 

Constructing Axisymmetric, Hamada, 
and Boozer coordinates

Calculating metric components and 
advection operators

IGS [Matsuyama]
Flux coordinate Interface  

GKV
Local fluxtube code 

Turbulence simulation
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Verification of flux coordinates with solovev equilibrium 
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- Analytic expression of solovev equilibrium with finite elongation, triangularity, and up-down asymmetry:  

Original 2D equilibrium data with  

 (R,Z)  (R[⇢, ✓], Z[⇢, ✓])  (R[⇢, ✓], Z[⇢, ✓])

E = 1.6, d = 0.05,

✏a = 0.25, ⌫asym = �0.3

Boozer coord. with  ⇢ = ( / edge)
1
2 Hamada coord. 

Less deformation of constant   -surface near the edge for 
Hamada coord. (especially, out-board side)

✓
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Verification of flux coordinates with solovev equilibrium 

Boozer coord. Axisymmetric coord. Hamada coord. 
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- Consistency is verified by the following analytical expressions:  

Relative error to analytical expressions

9

All the constructed coordinate systems show sufficient accuracy(up to ~10-8) for turbulent 
transport analyses.
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Application to realistic plasmas on JT-60SA  
10

- Two L-mode plasmas are considered (The MHD stability has been well investigated: N. Aiba PFR2007 ):    
ITER-like plasma with single null: “IT” Highly-Shaped plasma with quasi double null: “HS” 
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Field aligned structures of B-intensity, ωd, and k2   

B-intensity   Magnetic drift   Squared wavenumber 
IT: ITER-like,  HS: Highly shaped   

- Field aligned structures in shaped plasmas deviate from those in circular plasmas (outer sides).  
- Stronger asymmetry in k2 for ITER-like plasma than that in Highly-Shaped plasma.
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Trapped/Passing boundaries  
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IT: ITER-like,  HS: Highly shaped   
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- More sharp boundary, but less trapped region for shaped plasmas compared with circular ones.    
---> Strong impacts on ITG with kinetic elec. and TEM turbulence dynamics. 

⇢ = 0.25

⇢ = 0.25



Linear ITG mode stability for the ITER-like plasma  
q- and s-profiles   ITG-ae mode spectra  
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q 1.85 1.97 2.43

s 0.03 0.23 1.06
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- Broader ITG-spectra with more localized eigenmode appear especially in strongly shaped region 
(outer side).   
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ITG-ae mode spectra  
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- ITG mode growth rates in Highly-shaped case is slightly lower than those in the ITER-like cases.     
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Geometric dependence of residual zonal flow levels   
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- Shaping effects in IT- and HS- plasmas lead to    
---> significant enhancement of residual zonal flow levels
---> stronger kx- (or kr-) dependence compared with circular plasmas.   

IT: ITER-like,  HS: Highly shaped   

HS is expected to be more 
favorable to ITG-stability and 
ZF-response!
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Nonlinear simulation and entropy balance   
16 
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- The entropy balance relations 
are well satisfied both in the 
non-zonal and zonal parts.   
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ITER-like  Highly-Shaped  

- Highly-Shaped cases show 
lower transport levels with 
higher critical temperature 
gradient.  
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Nonlinear zonal flow generation
17 IT: ITER-like,  HS: Highly shaped   
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- As is expected by linear ZF-damping analyses, more efficient 
ZF generation is observed in the nonlinear phase of the Highly-
Shaped case.   
- Stronger kx-dependence of Z/T is also identified in the Highly-
Shaped case.  (Z: ZF-intensity, T: turbulence intensity)
---> Qualitative features on the amplitude and kx-dependence are 
well agreed with linear results shown in the previous slides. 
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Towards the transport modeling   
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Scaling on LHD [M. Nunami PoP2012]  and JT-60SA

LHD JT-60SA

---> Promising to construct the similar reduced transport model produced by the 
linear spectra and residual ZF levels. (currently underway...)  
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Turbulence spectra

- ITG turbulence simulations on LHD show that the ion heat diffusivity well scales with T/Z1/2 , and 
GK-simulation-based transport model including zonal-flow effects has been developed.     

[M. Nunami PoP2012, 2013]

- Good scaling between χi and Τ/Ζ1/2 is also observed in JT-60SA case.     

JT-60SA
ρ=0.5

- Turbulence spectra near the peak region are well characterized with linear spectra,           .      �ITG/k2
y



Summary  

- An interface code to generate flux coordinates system from realistic plasma equilibria calculated by 
free-boundary 2D Grad-Shafranov solver MEUDAS is successfully implemented to a local fluxtube 
code GKV. 

- The accuracy of the flux coordinates, i.e., Axisymmetric, Boozer, and Hamada, are verified with an 
analytical solovev equilibrium model.  

- Linear ITG-ae stability (ae: adiabatic electrons) is investigated for two types of shaped plasmas in 
JT-60SA, i.e., ITER-like plasma(IT) and Highly shaped one(HS), then the difference from the 
concentric circular equilibrium, which is conventionally used in gyrokinetic code, has been clarified.    

More detailed analyses including a multi-species/scales stability analysis, nonlinear simulations, and 
constructing the GK-based transport model are in progress.  
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---> Highly-shaped configuration shows less ITG-driven transport than that in the standard ITER-like 
configuration, due to stronger generation of zonal flows.     
---> The turbulent ion heat diffusivity well scales with T/Z1/2, which suggests the applicability of a GK-
simulation based transport model. 


