using GNET-TD and TASK3D

Abstract

+ An integrated transport code for helical plasmas, TASK3D, has been developed.

+ In order to validate the prediction accuracy for time-development plasmas, we
apply TASK3D to the time-development LHD plasma by using GNET-TD code.

+ The simulation result of time evolution of temperature well agreed with
experimental result.

« Further, employing the extended gyro-Bohm with gradT model for turbulent
transport for ion, temperature profile was well reproduced.

-

* Helical fusion reactor

Poloidal coi

— Confinement magnetic field is
generated mainly by the external coils.

— Steady-state plasma is obtained
without plasma current.

— Three-dimensional magnetic
configuration.

Helical coil

* Large Helical Device (LHD)
— Major radius is 3.9m, minor radius is 0.6m,
Magnetic strength at the center is 3-4 T.
— Electron Cyclotron, Ion Cyclotron Resonance
Frequency, and Neutral Beam Injection Heating
have been installed.

* Integrated transport code, TASK3D

— TASK3D[1] is an integrated transport code for helical plasmas based on TASK[2].

— We combine the various models for different physical processes
to describe the whole time evolution of the plasma.

— Systematical understanding of the confinement physics
— Prediction of the achievable parameters in future reactor.

Modular structure of TASK3D
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* Heat deposition: GNET-TD code
— We solve drift kinetic equation in 5-D phase space using GNET-TD code.
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f : Beam ion distribution function

v, : Velocity parallel to the field line

Vp : Drift velocity

Ceoll: Coulomb collision term

Lrariicle : Particle loss term (orbit & charge exchange)

: Beam ion source term (evaluated by a part of FIT3D module)
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— GNET-TD is a Monte Carlo code for time-development plasma based on GNET
code[3].
— Guiding-center orbit of test particles are followed in Boozer coordinates.
— Time development of the density and temperature is considered.
* Successive load of n,, T, »Time change of collision operator
* Successive addition of test particles=> Time-dependent source term

‘We can evaluate non-stationary beam distribution and deposition in time-
development plasmas.

* Heat transport equation: TR module
— We solve 1-D diffusive heat transport equation.
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D, : the particle diffusion coefficient y,: the thermal diffusion coefficient
Vi, :the heat pinch velocity

V,:the particle pinch velocity

NC, neoclassical transport coefficient: neoclassical transport database, DGN/LHD.
TB, turbulent transport coefficient: the turbulent transport models.

— In this study, we consider the turbulent term is only x™. (D,TB=V,TB=V, TB=0).

— We employ two turbulent models and compare the results.
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Simulation Results

¢ Heat transport simulation
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- Extended gyro-Bohm with gradT model
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+ We employed gyro-Bohm and gyro-Bohm+grad 7 model for turbulent transport
coefficients.

+ The constant factors for electron and ion were assumed to be equal and chosen to fit
the maximum value of 7, to experimental result. (C,(0=C;®=C;(!=10, in this study.)

+ The simulation results well agreed with experimental results.
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* Development of TASK3D
— Several turbulent transport models have been installed in TASK3D.
— Validation of heat transport simulation have been done comparing with the
steady-state plasmas in LHD.
— In order to further improve the prediction accuracy of the code, we have to
apply the code to various plasmas.

In this study, we apply TASK3D to the time-development LHD plasma to validate
the prediction accuracy for time-development plasmas.

get plasma (LHD #114053)

Time evolution

Radial profile of the density

* Beam ion distribution in velocity space

r/a>0.5

* Heat diffusion coefficient for ion
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transport, neoclassical component }NC became
. lower.
‘We apply TASK3D+GNET-TD to the NBI-heated pure H plasma in LHD. .

Rax=3.6m, B0 =2.75T
In this shot NBI heating power and plasma density changes in time.
‘We compare the time development of Te and Ti.

NBI heating systems in Large Helical Device (LHD)

NBI#5

NBI#1:

*  Five NBI (Neutral Beam Injection) heating
systems are installed and applied to
experiments in LHD.

*  Intime-development plasma, birth profiles
and slowing-down time of NBI beam ions
change with time.
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* Heat deposition to electron and ion

Time evolution
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*  Anintegrated transport cord for helical plasmas, TASK3D, has been developed.

*  We performed an integrated transport simulation of time-development LHD
plasma using GNET-TD code and TASK3D code.

*  Heat deposition to electron changed in response to tangential beam power, while
heat deposition to ion changed in response to perpendicular beam power.

¢ The simulation results of TASK3D well agreed with experimental observations.

= We have to consider the effect of plasma = 7.0 ' ' ' ' + Beam distribution and heat *  Especially, the extended gyro-Bohm model including temperature gradient well

time development to evaluate the heat = 6.0¢ deposition was obtained by reproduced the radial profile of ion temperature.

deposition of NBI. 6§ 50¢E H summing each beam
8 30F f + Electron heating changed in
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MEXI YA —_P, H response to tangential beam * Include the effect of impurities (carbon, helium...) in both beam deposition and
§ 1.0 E '." _____ P power. ) heat transport simulation.

S| mu Ia M Od els = 0.0 ) — ) ) ¢ lon heating changed_ n * Development of the turbulence transport model with transport improvements.
' 3.5 0 4.5 5.0 response to perpendicular * Further, we will apply the GNET-TD and TASK3D to various plasmas in wider
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