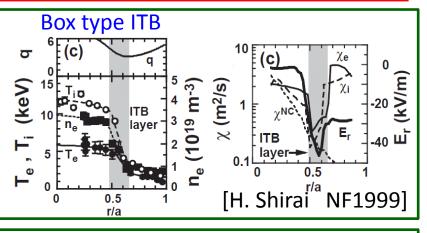
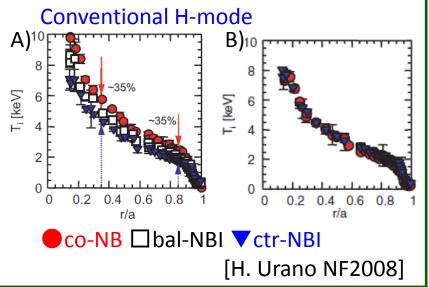


Simulation studies of core heat transport in JT-60U plasmas with different toroidal rotation profiles


E. Narita¹, M. Honda², N. Hayashi², H. Urano², S. Ide², T. Fukuda¹

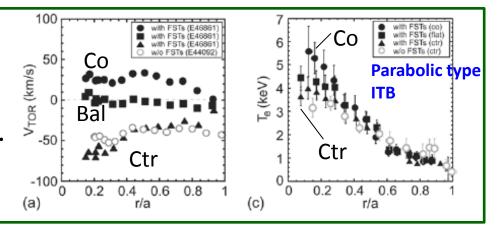
Osaka Univ., ²JAEA


This work was carried out using the HELIOS supercomputer system at International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA.

Improved confinement related to toroidal rotation

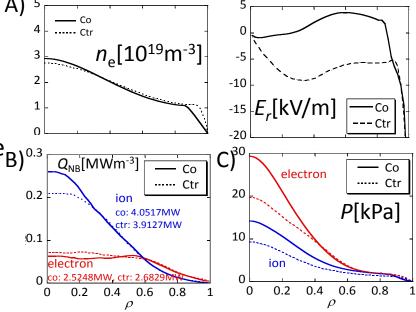
 The improved confinement mode with internal transport barriers (ITBs) has been observed in plasmas with the strong E_r shear.

- A) The pedestal temperature increases with co-toroidal rotation and profile stiffness.
- B) Identical core temperature profiles have been observed for co- and counter- rotating plasmas with identical pedestal temperature.



Does toroidal rotation have little influence on core hear transport without the strong change in E_r shear?

Influence of co-toroidal rotation on T_e -ITB


- The better T_e -ITB with co-toroidal rotation has been observed.
- The difference in E_r shear is small.

[N. Oyama NF2007]

Points of these plasmas

- A) The slight difference in the core n_e profile
- B) Similar power deposition profiles
- C) With a change in the toroidal rotation profile $_{\rm B)^{0.3}}$
 - P_e increases larger in the core region
 - $-P_i$ increases larger in the pedestal region and is maintained with similar profile

Investigation of toroidal rotation effects on core heat transport

Investigate effects of toroidal rotation on core heat transport in conventional H-mode and parabolic type ITB plasmas using

- Transport models implemented in the transport code TOPICS
- The flux-tube gyrokinetic code GS2

First order equilibrium flows in Tokamaks

$$\mathbf{V_a} = \omega_{\mathbf{a}}(\psi)R\hat{\boldsymbol{\phi}} + \underline{\hat{u}_{\mathbf{a}\theta}}\mathbf{B}$$

Toroidal flow

Parallel flow

$$\overset{\downarrow}{\omega_{\rm a}}(\psi) \equiv -\frac{d\Phi}{d\psi} - \frac{1}{n_{\rm a}e_{\rm a}}\frac{dp_{\rm a}}{d\psi}$$

Including radial electric field effects

Focus on ExB shear representing toroidal rotation in this study

Integrated suite of codes TOPICS

TOkamak Prediction and Interpretation Code System [N. Hayashi PoP2010]

- 1D transport & 2D MHD equilibrium
- Time-dependent / Steady-state analysis of JT-60U experiment
- Simulation with transport model
 - Neoclassical: MI method or NCLASS, Anomalous: CDBM, GLF23, BgB, MMM95
- Development of toroidal momentum eq. solver consistent with E_r (M. Honda)
- Tuning of CDBM model to LH transition (M. Yagi, PET2011)

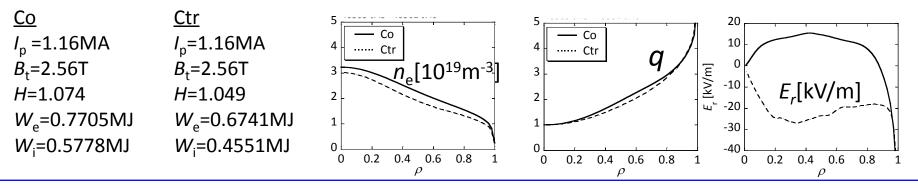
Components

- NB & High energy particle: 1D or 2D FP, 3D MC (F3D-OFMC)
- EC: Ray tracing & Relativistic FP (EC-Hamamatsu)
- IC : Full wave analysis (TASK/WM), LH : Bonoli module in ACCOME
- MHD stability: Kink / Ballooning / Peeling (MARG2D)
- Impurity: 1D transport (IMPACT)
- Neutral : 2D MC
- Radiation: Impurity line radiation model (Coronal eq.), Synchrotron (CYTRAN)
- SOL / Div. : Five-point model (D5PM), 2D Fluid & MC (SONIC)
- Pellet : Ablated Pellet with ExB drift (APLEX)

* —— •••used in this study

Transport models implemented in TOPICS

- Given: The MHD equilibrium, the q profile, the density profile
- *Calculate*: ion and electron temperatures in ρ < 0.85
- The anomalous heat diffusivity is given by following transport models.
- Current Diffusive Ballooning Mode (CDBM) [e.g. A. Fukuyama PPCF1995]


$$\chi_{\text{CDBM}} = C \frac{c^2}{\omega_{\text{pe}}^2} \frac{v_{\text{A}}}{qR} |\alpha_{th}|^{3/2} F(s, \alpha) G(\kappa) H(\omega_{E \times B})}{H(\omega_{E \times B})} = \frac{A}{1 + (B \underline{\omega_{E \times B}} / \gamma_{\text{CDBM}})^K} / \begin{cases} \omega_{E \times B} = \frac{RB_{\theta}}{B_{\text{t}}} \left| \frac{d}{dr} \frac{E_r}{RB_{\theta}} \right| \\ \gamma_{\text{CDBM}} = |\alpha|^{1/2} \frac{v_{\text{A}}}{qR} F(s') \end{cases}$$

- GLF23 [R. E. Waltz PoP1997, J. E. Kinsey PoP2005]
 - Mixing length formula is used to obtain the heat diffusivity with 10 wavenumbers for ion temperature gradient(ITG) and trapped electron mode(TEM) and 10 wavenumbers for $\gamma_{\text{net}} = \gamma - \alpha_{\text{E}} |\gamma_{E \times B}| \qquad \gamma_{E \times B} = \frac{RB_{\theta}}{B_{\text{t}}} \left| \frac{d}{dr} \frac{E_r}{RB_{\theta}} \right|$ electron temperature gradient(ETG) mode.
 - ITG/TEM is stabilized by the effect of ExB shear.
- Bohm/gyro-Bohm (BgB) [modified from M. Erba PPCF1997]

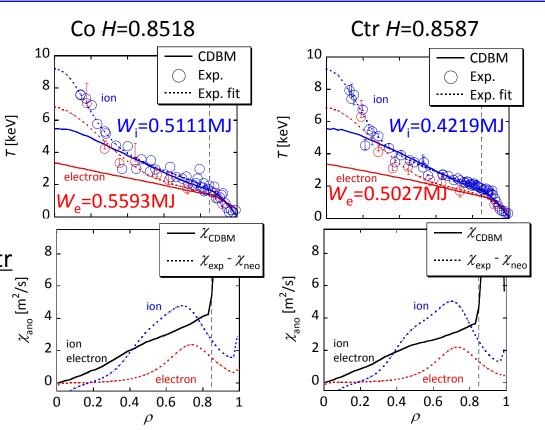
$$\begin{cases} \chi_{\rm e} = 8 \times 10^{-5} \chi_{\rm B} \frac{F_{\rm shear}}{F_{\rm shear}} + 7 \times 10^{-2} \chi_{\rm gB} \\ \chi_{\rm i} = 1.6 \times 10^{-4} \chi_{\rm B} \frac{F_{\rm shear}}{F_{\rm shear}} + 1.75 \times 10^{-2} \chi_{\rm gB} \end{cases} \qquad \begin{cases} \chi_{\rm B} = \frac{\nabla (n_{\rm e} T_{\rm e})}{n_{\rm e} B_{\rm t}} q^2 \left(\frac{T_{\rm e}(0.8 \rho_{\rm max}) - T_{\rm e}(\rho_{\rm max})}{T_{\rm e}(0.8 \rho_{\rm max})} \right) \\ \chi_{\rm gB} = \rho^* \frac{|\nabla| T_{\rm e}}{B_{\rm t}} \end{cases}$$

$$F_{\rm shear} = \frac{1}{1 + \exp\{20(0.05 + \omega_{E \times B}/\underline{\gamma_{\rm ITG}}) - s\}} \qquad \gamma_{\rm ITG} = 0.1 \frac{c_{\rm s}}{a} \left(\frac{a}{L_{n_{\rm i}}} + \frac{a}{L_{T_{\rm i}}} \right)^{0.5} \left(\frac{T_{\rm i}}{T_{\rm e}} \right)^{0.5} \end{cases}$$

Calculations with CDBM for H-mode shots

CDBM model

<u>lon</u>


 T_i similar to exp. for $\rho > 0.3$

Electron

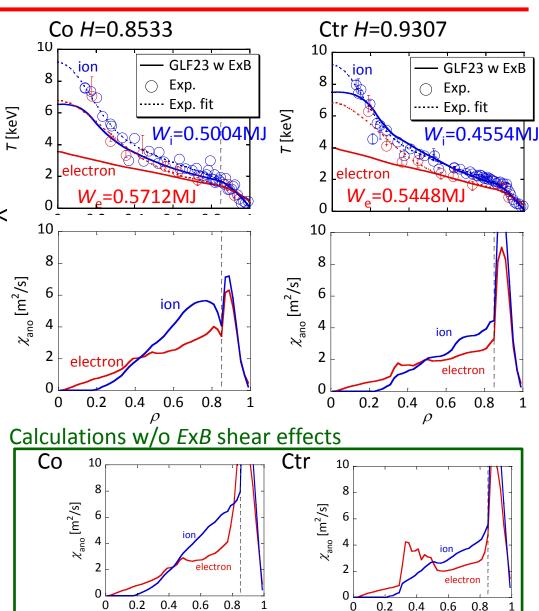
 $T_{\rm e}$ lower than exp. with high $\chi_{\rm e}$

Comparisons between co and ctr

Little difference

Calculations with GLF23 for H-mode shots

Ion


similar T_i profile to exp. for $\rho > 0.2$ Better agreement for ctr case

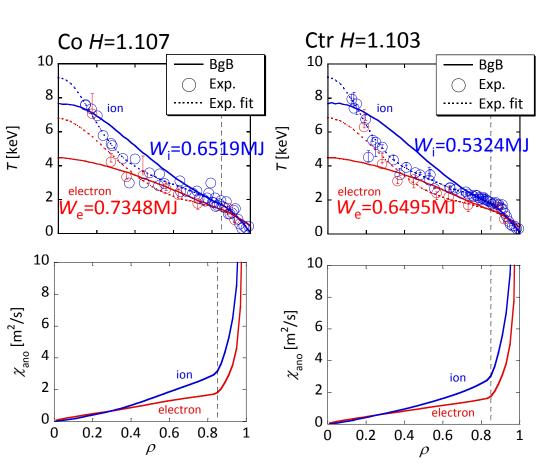
Electron

lower $T_{\rm e}$ than exp., especially for ρ < 0.5

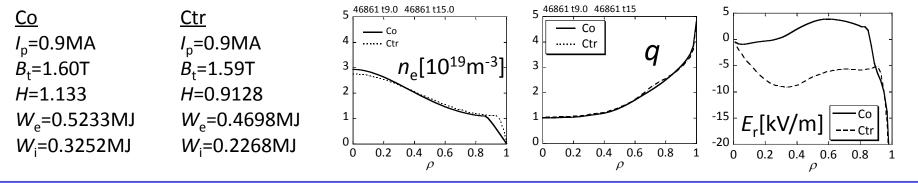
Comparisons between co and ctr

- Predicted χ_i for co rotation is larger than that for ctr rotation.
- However, the difference in χ_i is not caused by ExB shear effect.

Calculations with BgB for H-mode shots


Ion

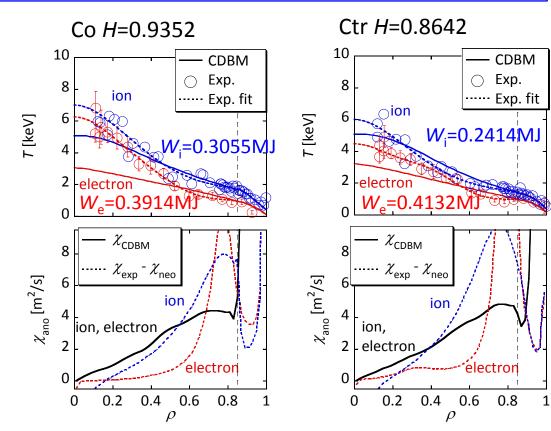
overestimated T_i with much smaller χ_i than exp., especially for $0.4 < \rho < 0.8$


Electron

 $T_{\rm e}$ similar to exp. for ρ > 0.3

Comparisons between co and ctr Little difference

Calculations with CDBM for parabolic ITB shots


CDBM model

lon

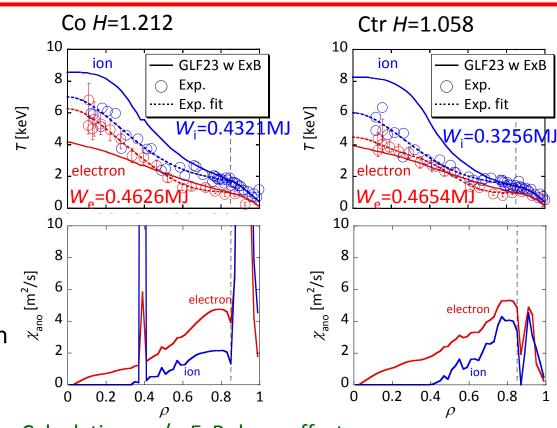
similar to exp. for ρ > 0.3

Electron

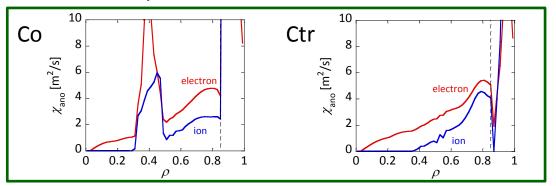
similar $T_{\rm e}$ for $\rho > \rho_{\rm ITB}$ lower $T_{\rm e}$ with high $\chi_{\rm e}$ for $\rho > \rho_{\rm ITB}$, especially for co case

Calculations with GLF23 for parabolic ITB shots

<u>lon</u>


similar T_i gradient, but overestimated T_i with much smaller χ_i than exp.

Electron

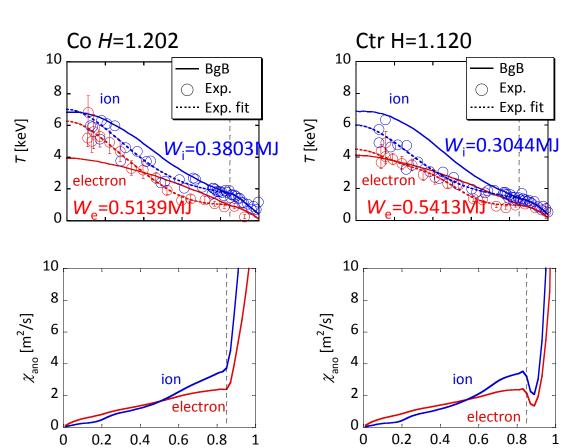

Co: similar $T_{\rm e}$ for $\rho > \rho_{\rm ITB}$

Ctr: similar $T_{\rm e}$

→ Failure of T_e -ITB reproduction may be due to ETG mode [cf. J. E. Kinsey PoP2005]

Calculations w/o ExB shear effects

Calculations with BgB for parabolic ITB shots


<u>lon</u>

Co: similar to exp.

Ctr: overestimated

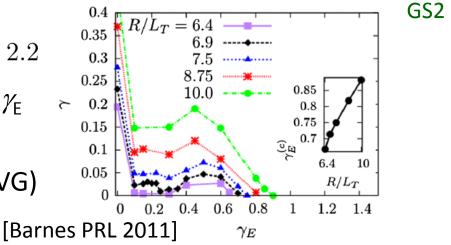
Electron

similar to exp. for ctr case, but no gradient like exp. for both co and ctr cases

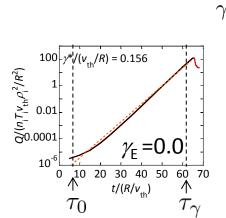
GS2 code

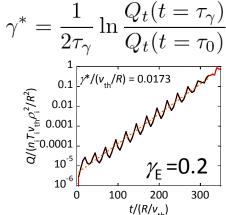
GS2 code [M. Kotschenreuther CPC1995, W. Dorland PRL2000] is

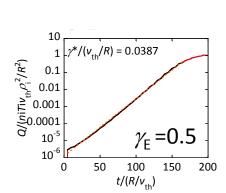
- the local flux-tube gyrokinetic code
- solving the gyrokinetic equations for the perturbed distribution functions δf
- able to carry out linear and nonlinear
- able to calculate both electrostatic and electromagnetic cases, including nonadiabatic (kinetic) electrons
- calculating initial value problems using the Lorentz collision operator
- able to work with s- α model equilibrium, Miller equilibrium and the equilibrium obtained experiments(G EQDSK)
- incorporating effects of sheared flow by forcing radial wavenumber k_x to depend linearly on time

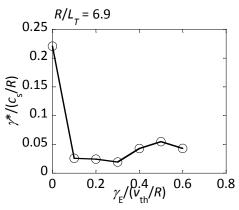

$$k_x(t)=k_{x0}-\underline{\gamma_{E\times B}}k_yt \qquad \gamma_{E\times B}=\frac{\rho}{q}\frac{d\omega}{d\rho} \quad \text{Toroidal angular velocity} \\ \gamma_p=(qR/r)\gamma_{E\times B} \quad : \text{Parallel flow shear}$$

Effects of the flow shear


Cyclone base case


$$q = 1.4, s = 0.8, r/R = 0.18, R/L_n = 2.2$$


- ITG mode is stabilized by increasing $\gamma_{\rm E}$ for $0 < \gamma_{\rm E} < 0.3$.
- ITG and parallel velocity gradient (PVG) drive for $0.3 < \gamma_{\rm E} < \gamma_{\rm E}^{\rm (c)}$.



- The effects of the flow shear are confirmed.
- The growth rate is estimated by time dependence of the heat flux at linear phase. [C. M. Roach PPCF2009]

Conclusions and future works

Transport models

Conventional H-mode

- Estimated T_i using CDBM and GLF23 is similar to exp.
- CDBM and BgB predict little differences between co and ctr cases.

Parabolic ITB

- CDBM and GLF23 predict similar $T_{\rm e}$ and $T_{\rm i}$ for $ho >
 ho_{\rm ITB}$.
- CDBM, GLF23 and BgB do not show the difference in $T_{\rm e}$ profile between co and ctr cases observed in the experiment.

Gyrokinetic code GS2

ExB shear stabilization and PVG destabilization are able to investigate with GS2

Future works

- ☐ Calculations using GS2 with the equilibrium obtained experiments
- Estimation of ExB shear effects using the transport model TGLF [G. M. Staebler PoP2005, PoP2007, J. E. Kinsey PoP2008]