

Impact of Centrifugal Modification of Magnetohydrodynamic Equilibrium on Resistive Wall Mode Stability

J. Shiraishi, N. Aiba, N. Miyato, and M. Yagi (Japan Atomic Energy Agency)

Summary

- RWMs in self-consistent (including rotational modification of the Grad-Shafranov equation) equilibria have been numerically investigated.
- Compared with conventional (using the static Grad-Shafranov equation) equilibria, in the self-consistent equilbria,
 - ✓ RWM growth rates are reduced for a wide parameter range of β_N (=3~5), rotation (M² <~0.15) and wall location.
 - ✓ The stable window is enlarged and shifted.
 - Stable windows can exist even if the conventional equilibria have no window.
- ✓ The modification of equilibrium profile, not of eigenfunction, is essential to stabilization in self-consistent equilibria.
- ✓ In self-consistent equilibria, reduction of destabilizing energy δW_{uhp} and δW_{uhc} is essential to stabilization.

What is Resistive Wall Modes (RWMs)?

- RWMs originates from external kink modes (γτ_A~1).
- ✓ Ideal walls stabilize external kink modes.
- Resistive walls slow down external kink modes to timescale of eddy current decay (γτ_w~1).

Why RWM? How to stabilize RWM?

- Stabilization of RWMs is a necessary condition for operation of advanced tokamaks aiming at steady-state high-β_N plasma confinement such as JT-60SA.
- ✓ Many theoretical/experimental researches show rotational stabilization of RWMs.

As a basis of quantitative RWM study, we need to develop a numerical code for RWM in realistic tokamak geometry including plasma rotational effects.

RWM codes in tokamak geometry

- ✓ MARS-F (Chu PoP05), MARS-K (Liu NF09), CarMa (Liu PoP09)
 - ✓ Linearized resistive MHD, "perturbative" toroidal rotation, kinetic effects, 3D wall, feedback.
- ✓ NMA (Chu NF03)
 - ✓ Linearized ideal MHD without rotation, feedback.
- ✓ MISK (Berkery PRL11)
 - ✓ Linearized ideal MHD without rotation, kinetic effects
- ✓ VALEN (Bialek PoP01)
 - ✓ Linearized ideal MHD without rotation, 3D wall, and feedback
- ✓ MINERVA(Aiba CPC09) with "RWMaC" modules
 - ✓ We develop a new RWM code. It has some advantages :
 - ✓ (1) perturbative poloidal rotation (Aiba PoP11)
 - (2) <u>centrifugal modification of MHD</u> equilibrium by plasma toroidal rotation
 - ✓ (3) initial value approach

Rotational modification of MHD equilibrium

Under isothermal condition $T=T(\psi)$, existence of toroidal rotation generalizes the Grad-Shafranov equation as (e.g. Zehrfeld NF72)

$$\Delta^{*}\psi = -F \frac{dF}{d\psi} - \mu_{0}R^{2} \frac{\partial p}{\partial \psi}\Big|_{R}$$

$$p(\psi, R) = p_{0}(\psi) \exp\left[M^{2}(\psi)\left(\frac{R^{2}}{R_{0}^{2}} - 1\right)\right]$$
(1)

Definition of two types of equilibria used in this poster

We call the solution to (1) as **"self-consistent** equilibrium."

Conventional studies approximate p^{p_0} due to the smallness of M², i.e., the equilibrium is static. We call this approximated solution as "conventional equilibrium."

Rotational modification of MHD equilibrium (cont.)

Examples for "conventional" and "self-consistent" equilibria with β_{N} ~2.83 and M²=0.1

Note : Pressure gradient and parallel current are affected by self-consistent inclusion of rotation compared with ψ.

Formalism for linear dynamics of RWMs – vacuum and resistive wall dynamics

Ampère's law across the resistive wall

$$\chi^{(w+)}(\theta,\phi,t) - \chi^{(w-)}(\theta,\phi,t) = \mu_0 \kappa$$
 (2)

Faraday's and Ohm's laws across the resistive wall

$$\frac{\Delta |\nabla s|}{\eta} \frac{\partial \widetilde{B}^{(n)}}{\partial t} = -\nabla \cdot \left(|\nabla s|^2 \nabla_{\perp} \kappa \right)$$
(3)

Quadratic form from (2) and (3) yields energy balance

$$\delta W_{IV} + \delta W_{OV} + \frac{1}{2\mu_0} \int_{S_p} \chi^{(p+)} \mathbf{Q}_e^* \cdot \hat{n} dS + \delta D_w = 0 \quad (4)$$
plasma response

vacuum magnetic energy
$$\delta W_{IV(OV)} = \frac{1}{2\mu_0} \int_{IV(OV)} |\nabla \chi^{\pm}|^2 d\tau$$

energy dissipation in resistive wall $\delta D_w = \frac{1}{2} \int_{\text{wall}} \kappa \mathbf{B} \cdot d\mathbf{S}$

Formalism for linear dynamics of RWMs – linear plasma response

Plasma is governed by the Frieman-Rotenberg equation (Frieman RMP60), which is the linearized ideal MHD with equilibrium rotation.

$$\rho \partial_t^2 \boldsymbol{\xi} + 2\rho (\mathbf{u} \cdot \nabla) \partial_t \boldsymbol{\xi} = (F_s + F_d) \boldsymbol{\xi}$$
 (5)

static and dynamic force operator

Linear plasma response of the Fireman-Rotenberg equation reads

$$\frac{1}{2\mu_0} \int_{S_p} \chi^{(p+)} \mathbf{Q}_e^* \cdot \hat{n} dS = \delta K + 2\delta W_c + \delta W_p \quad (6)$$

Kinetic energy : $\delta K = \frac{1}{2} \int \xi^* \cdot \rho \partial_t^2 \xi d\tau$

convective energy: $\delta W_c = \frac{1}{2} \int \xi^* \cdot \rho(\mathbf{u} \cdot \nabla) \partial_t \xi d\tau$

Potential energy including equilibrium rotation

$$\delta W_{p} = \frac{1}{2} \int \boldsymbol{\xi}^{*} \cdot \left[\frac{|\mathbf{Q}|^{2}}{\mu_{0}} + \mathbf{J} \cdot (\boldsymbol{\xi}^{*} \times \mathbf{Q}) + (\boldsymbol{\xi} \cdot \nabla p) \nabla \cdot \boldsymbol{\xi}^{*} + \Gamma p |\nabla \cdot \boldsymbol{\xi}|^{2} - \rho \boldsymbol{\xi} (\mathbf{u} \cdot \nabla) \mathbf{u} + \rho \mathbf{u} (\mathbf{u} \cdot \nabla) \boldsymbol{\xi} \right] d\tau \quad (7)$$

Note : "Conventional equilibrium" approach introduces equilibrium rotation **u** in (6). The equilibrium quantities such as **B**, p, and p include the modification induced by toroidal rotation, which is based on the solution of "static" equilibrium.

Formalism for linear dynamics of RWMs – energy balance

(4) and (6) yield energy balance in plasma-wall-vacuum system.

RWM dynamics is governed by the balance among these energy sources (sinks).

"RWMaC" modules compute $\delta W_{IV(OV)}$ and δD_w

To solve (8) we have developed "RWMaC" modules to compute $\delta W_{IV(OV)}$ and δD_w , and have implemented them into MINERVA (Aiba CCP09) that computes δK , δW_p , and δW_c .

Inner vacuum and outer vacuum : $\delta W_{IV(OV)}$

: Laplace equation for χ
(magnetic scalar potential $\mathbf{B} = \nabla \chi$)
: hybrid FEM for IV
hybrid FEM or Green's function
method for OV

Resistive wall : δD_w

Governing equation	: diffusion equation for к
	[current potential J =(∇ s× ∇ κ)δ(s-s _w)]
Numerical scheme	: hybrid FEM

Boundary conditions on resistive wall and plasma surface : Continuity of normal magnetic field + natural boundary condition

RWMs in self-consistent equilibria – high- β_N equilibria for JT-60SA

By MINERVA/RWMaC, we can study the RWMs in selfconsistent equilibria.

We consider high- β_N (2.8< β_N <5.5) equilibria with fixing D-shape of plasma surface (κ =1.91 and δ =0.5), toroidal magnetic field B₀=1.7T, and plasma current I_p=2.3MA, which are typical parameters for advanced plasma designed for JT-60SA.

 β_N is increased by scaling p_0 with keeping the almost same profiles of safety factor and parallel current.

RWMs in self-consistent equilibria – wall location rotation profiles

Rotation profiles is characterized by $\Omega(\psi) = \Omega_0 [1 - (\psi/\psi_{sur})^5]^2$. By changing Ω_0 and fixing temperature at magnetic axis, we consider 3 cases of squared Mach number rotation as $M^2 = 0.05, 0.1$, and 0.15 which are relevant to low-aspect ratio tokamaks.

We use two wall locations b/a=1.12 and 1.24.

RWM stabilization in self-consistent equilibria - scan by β_N , rotation, and wall location

Normalized RWM growth rates without rotation, in conventional equilibrium, and self-consistent equilibrium as functions of β_N

Note on scan by β_N , rotation, and wall location

- ✓ RWM growth rates are reduced in a wide range of wall location and β_N .
- ✓ Some cases (b/a=1.12 and M²=0.1, 0.15) show that
 - ✓ the self-consistent equilibrium has an extended stable window.
 - \checkmark the location of stable window is shifted.
- ✓ Other cases (b/a=1.12 and M²=0.05, b/ a=1.24 and M²=0.1, 0.15) show that
 - ✓ The self-consistent equilibrium has a stable window even if the conventional equilibrium has no window.

In self-consistent equilibria, RWMs are stabilized by equilibrium change selfconsistently introduced in the equilibrium.

Modification of equilibrium is essential to RWM stability – eigenfunction modification is not

Rotation modifies eigenfunction as well as equilibrium.

RWM problem reads $A\xi = \lambda B\xi$. Defining Δ by $\Delta f = f_s - f_c$ where s (c) indicates self-consistent (conventional), the problem reads

$$(A_c - \lambda_c B_c)\Delta \xi + B_c \Delta (B^{-1}A)\xi_s = \Delta \lambda B_c \xi_s$$

eigenfunction change

equilibrium change

eigenvalue change

Reduction of pressure and current driven terms is essential to RWM stabilization

From energy balance (8), we get

$$\gamma = \operatorname{Re}(\lambda) = -\frac{\delta W_p + \delta W_{IV} + \delta W_{OV}}{\left|\delta D_w + 2\delta W_c^2\right|^2} \delta D_w$$

We decompose potential energy δW_p as

$$\begin{split} \delta W_p &= \delta W_{ssA} + \delta W_{ss} + \delta W_{scA} &: \text{stabilizing} \\ &+ \delta W_{uhp} + \delta W_{uhc} &: \text{destabilizing} \\ &+ \delta W_{d1} + \delta W_{d2} + \delta W_{d3} &: \text{mode complexity} \end{split}$$

destabilizing by pressure and current driven

:mode compression, shear, centrifugal effect due to rotation

In self-consistent equilibrium, we get smaller δW_{scA} and larger δW_{d3} . So it seems to lead to destabilization, however, reduction of destabilizing δW_{uhp} and δW_{uhc} leads to stabilization