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Summary

v" RWMs in self-consistent (including rotational
modification of the Grad-Shafranov equation) equilibria
have been numerically investigated.

v' Compared with conventional (using the static Grad-
Shafranov equation) equilibria, in the self-consistent
equilbria,

v RWM growth rates are reduced for a wide
parameter range of B(=3~5), rotation (M? <~0.15)
and wall location.

v" The stable window is enlarged and shifted.

v' Stable windows can exist even if the conventional
equilibria have no window.

v" The modification of equilibrium profile, not of
eigenfunction, is essential to stabilization in self-
consistent equilibria.

v In self-consistent equilibria, reduction of destabilizing
energy 6W ,and dW , is essential to stabilization.



What is Resistive Wall Modes
(RWMs)?

v RWMs originates from external kink
modes (yt,~1).

v’ Ideal walls stabilize external kink
modes.

v’ Resistive walls slow down external
kink modes to timescale of eddy
current decay (yt,~1).
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Why RWM? How to
stabilize RWM?

v’ Stabilization of RWMs is a necessary
condition for operation of advanced
tokamaks aiming at steady-state high-3
plasma confinement such as JT-60SA.

v' Many theoretical/experimental researches
show rotational stabilization of RWMs.
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As a basis of quantitative RWM study, we need
to develop a numerical code for RWM in realistic
tokamak geometry including plasma rotational
effects.



RWM codes in tokamak
geometry

MARS-F (Chu PoP05), MARS-K (Liu NF09), CarMa (Liu
PoP09)

v’ Linearized resistive MHD, “perturbative” toroidal
rotation, kinetic effects, 3D wall, feedback.

NMA (Chu NFO3)
v’ Linearized ideal MHD without rotation, feedback.
MISK (Berkery PRL11)

v’ Linearized ideal MHD without rotation, kinetic
effects

VALEN (Bialek PoP01)

v’ Linearized ideal MHD without rotation, 3D wall,
and feedback

MINERVA(Aiba CPC09) with “RWMaC” modules

v' We develop a new RWM code. It has some
advantages :

v (1) perturbative poloidal rotation (Aiba PoP11)

v (2) centrifugal modification of MHD
equilibrium by plasma toroidal rotation

v' (3) initial value approach



Rotational modification
of MHD equilibrium

Under isothermal condition T=T({)), existence of toroidal
rotation generalizes the Grad-Shafranov equation as (e.g.
Zehrfeld NF72)

A dr 2 Op
AY =—F ——— U R"——
« dy X7 . )
R2
ply.R)= p,( )Jexp Mz(z//)(?q”
- 0

Definition of two types of equilibria used in this poster

We call the solution to (1) as “self-consistent
equilibrium.”

Conventional studies approximate p~p, due to the
smallness of M?, i.e., the equilibrium is static.

We call this approximated solution as “conventional
equilibrium.”
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Rotational modification of
MHD equilibrium (cont.)

Examples for “conventional” and “self-consistent” equilibria
with B,,~2.83 and M?=0.1
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Formalism for linear dynamics of RWMs
—vacuum and resistive wall dynamics

Ampere’s law across the resistive wall
X(W+)(67¢’t)_x(w_)(97¢7t)= UK (2)
Faraday’s and Ohm’s laws across the resistive wall
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Quadratic form from (2) and (3) yields energy balance

(5WW+§W0V+—f 27Q -hdS +6D, =0 (4)
2u, 95

plasma response
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5W1V(0V) =

vacuum magnetic energy

energy dissipation in resistive wall 8D = i fKB-dS

wall



Formalism for linear dynamics of RWMs
— linear plasma response

Plasma is governed by the Frieman-Rotenberg equation (Frieman
RMP60), which is the linearized ideal MHD with equilibrium
rotation.

pOE+2pV)IE=(F +F, 5 (5)

static and dynamic force operator

Linear plasma response of the Fireman-Rotenberg equation reads

f)(’“Q -1dS = 0K +20W, + oW, (6)
2uyY*

Kineticenergy: 6K = %fﬁ - 00°EdT

convective energy : s — 1 f‘:* plu-V)o gdr
© 2
Potential energy including equilibrium rotation

f& ‘Q‘ +3-("xQ)+(E-VpIV-& +Tp|v-gf - p&(u-V)u+ pu(u-VE|dz (7)

Note : “Conventional equilibrium” approach introduces equilibrium rotation u in (6).
The equilibrium quantities such as B, p, and p include the modification induced by
toroidal rotation, which is based on the solution of “static” equilibrium.



Formalism for linear dynamics of RWMs
— energy balance

axis of symmetry

A

<« outer vacuum (OV)

resistive wall

plasma .
inner vacuum (IV)

(4) and (6) yield energy balance in plasma-wall-vacuum
system.

- vacuum wall

OK +20W, +0W +oW,, +oW, +oD, =0 (8

kinetic convective potential energy vacuum energy dissipation
energy energy with rotation magnetic in resistive wall

energy in IV/OV

RWM dynamics is governed by the balance among these
energy sources (sinks).



“RWMacC” modules
compute 6W,,,,, and 6D,

To solve (8) we have developed “RWMaC” modules to

compute dW ) and 6D,,, and have implemented them
into MINERVA (Aiba CCP09) that computes 8K, 6W , and
oW

Cl

Inner vacuum and outer vacuum : 8W oy
Governing equation : Laplace equation for x
(magnetic scalar potential B=Vy)
Numerical scheme : hybrid FEM for IV
hybrid FEM or Green’s function
method for OV

Resistive wall : 6D,
Governing equation : diffusion equation for k

[current potential J=(V sxV k)&(s-s,,)]
Numerical scheme : hybrid FEM

Boundary conditions on resistive wall and plasma surface :
Continuity of normal magnetic field + natural boundary
condition



RWMis in self-consistent equilibria
— high-B,, equilibria for JT-60SA

By MINERVA/RWMaC, we can study the RWMs in self-
consistent equilibria.

We consider high-B, (2.8<B\<5.5) equilibria with fixing D-shape
of plasma surface (k=1.91 and & =0.5), toroidal magnetic field
By,=1.7T, and plasma current | ,=2.3MA, which are typical
parameters for advanced plasma designed for JT-60SA.

250

‘o
3
a

100t

50t

0 1 .
0 0.5 1
w112

0.5

0al B3 — _ By is increased by scaling p,
< Ej‘ : with keeping the almost same
e N= .
g 03 profiles of safety factor and
't parallel current.
3 0.2
m
K,

0.1

0 L
0 0.5 1



RWMis in self-consistent equilibria
— wall location rotation profiles

Rotation profiles is characterized by Q()=Q,[1-(b/,,)°]?. By
changing Q, and fixing temperature at magnetic axis, we
consider 3 cases of squared Mach number rotation as
M?2=0.05,0.1, and 0.15 which are relevant to low-aspect ratio

tokamaks.
We use two wall locations b/a=1.12 and 1.24.
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RWM stabilization in self-consistent equilibria
— scan by B,, rotation, and wall location

Normalized RWM growth rates without rotation, in conventional
equilibrium, and self-consistent equilibrium as functions of B
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Note on scan by
B, ,rotation, and wall
location

v RWM growth rates are reduced in a wide
range of wall location and .

v' Some cases (b/a=1.12 and M2=0.1, 0.15)

show that

v’ the self-consistent equilibrium has an extended
stable window.

v’ the location of stable window is shifted.

v Other cases (b/a=1.12 and M2=0.05, b/
a=1.24 and M?=0.1, 0.15) show that

v’ The self-consistent equilibrium has a stable
window even if the conventional equilibrium
has no window.

In self-consistent equilibria, RWMs are
stabilized by equilibrium change self-
consistently introduced in the equilibrium.




Modification of equilibrium is
essential to RWM stability —
eigenfunction modification is not

Rotation modifies eigenfunction as well as equilibrium.
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Reduction of pressure and current
driven terms is essential to RWM
stabilization

From energy balance (8), we get

oW, + W, + oW,
oD, +20m2|

We decompose potential energy 6W  as

y = Re(/l)= -

5Wp = (SWS‘SA + 5W9s + 5VVSCA

: stabilizing
+ 5VVuhp + 5VVuhc - destabilizing by pressure and current driven

:mod i h trifugal effect
+ 5Wd1 + 5Wd2 + 5Wd3 rgo e compression, shear, centrifugal effec
ue to rotation
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In self-consistent equilibrium, we get smaller 6W,_, and larger 6W ;.
So it seems to lead to destabilization, however, reduction of

destabilizing 6W ,, and 6W . leads to stabilization



