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Theory	


Experiment	


Mode with long radial correlation in ECH applied phase	


q(r,t)=− dr'
0

a
∫ Kl(r,r')neχe(T(r',t),∇T(r',t))∇T(r',t)

U. Stroth et al., Plasma Phys. Control. Fusion 38 (1996) 1087.	


G. Dif-Pradalier, P. H. Diamond, et al., Phys. Rev. E 82 (2010) 025401.	




Objective	


So far, 1 D model for avalanche or turbulent spreading is 
proposed to explain the non-local transport.!

In this study, transient plasma response is investigated, 
switching on/off particle source in plasma peripheral  region!
to identify the player for non-local transport.!

On the other hand, fluctuation with long radial correlation is 
found in ECH applied phase in LHD, which implies such mode 
may play a role for non-local transport.	




Simulation Model 	


4-field reduced MHD model(vorticity equation, Ohm’s law, parallel 
momentum balance , density(pressure) evolution	


Normalization: poloidal Alfven time and minor radius	


Density evolution	


∂p
∂t +[φ,p]=β[rcosθ,φ−δep]+β(δ∇// j−∇//v)+D∇⊥2 p+Sp

j=−∇⊥2A, δ=c/(aωpi),  δe=1/(1+τ )δ, τ=Ti /Te

D=10−6 τ coll ≈106τ pA

Sp=SAMPexp(−(r2+rs2−2rrscosθ)/(2Δ2))

Source term	
 rs =0.8,  θs =0,  Δ=0.1exp(−ξ 2 /(2Δ2))

(rcosθ, rsinθ )

(rs cosθs, rs sinθs )

ξ

ξ 2 = (rcosθ − rs cosθs )
2 + (rsinθ − rs sinθs )

2



Time evolution of internal energy	
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p1,0→v1,0
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Time evolution of flux averaged total density profile	


Ptot(r)≡Peq(r)+ P0,0(r)



Time evolution of flux averaged total density evolution	


Extended view	
 Rational surface	




Contour of density fluctuation at T=1350	
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Analysis	


Nonlinear interaction !
between!

(0,0) and (1,0) modes!

Non-local transport	


Spiral structure!
by (1,0) mode	


Direct energy transfer to (0,0) and (1,0) modes from source	
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Non-local transport is produced by!
convective nonlinearity in P0,0	


P1,0 is driven by toroidal coupling 
and compressibility which is 
coupled with V1,0	


V1,0 is driven by convective 
nonlinearity and compressibility 
which is coupled with A1,0	




Summary	


Nonlinear simulation is performed using 4F MHD model with 
peripheral source	


After switching off source term, non-local transport appears near 
q=3/2 surface	


(1,0) mode plays a role in non-local transport in this simulation	


(1) Energy is directly transferred to P0,0 and P1,0 modes when source is 
switched on!
(2) Spiral structure is formed by P1,0 mode when source is switched off!
(3) P1,0 interacts with P0,0 mode via convective nonlinearity, which 
produces non-local transport near q=3/2 surface!

Future work	

Investigate non-local transport for spherical source	

Investigate cold pulse propagation introducing electron 
temperature fluctuation	


2D structure (convective cell mode) is essential to produce !
non-local transport in this simulation	




Model Equation	


dU
dt =−∇//J−[rcosθ,p]+µ∇⊥

2U

∂A
∂t =−∇//(φ−δep)+η//J

dv
dt =−∇//p+4µ∇⊥

2v

dp
dt =β̂[rcosθ,φ−δep]−β̂∇//(v+δJ)+η⊥

β̂∇
⊥
2 p+S

d
dt=

∂
∂t+[φ,], U=∇

⊥
2φ, J=∇

⊥
2A

∇//=∇//
(0)−[A,], δ=c/(aωpi), δe=δτ /(1+τ ), τ =Te /Ti, β̂=β /(1+β)

p0,0

v1,0

p1,0
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WO (0,0) mode	


p(r,θ,z=0) p(r,m,z=0)
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