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MHD modes in high-g tokamaks @»

« For realizing economical fusion reactor, it is important to develop
a MHD equilibrium with high-g; S Is the ratio between plasma
pressure and magnetic pressure.

In such a high-g equilibrium, MHD modes sometimes become

unstable, and a long wavelength mode induces “disruption”.
Bn

e Such a MHD mode is usually AI
stabilized by surrounding the (G

plasma with conducting wall. ;7pemm=== —
« However, if the conducting - AT
wall has resistivity, so-called

resistive wall mode (RWM) &l—No-wall ByrLimit (C,=0)

becomes unstable. Matsunaga,
_ _ IAEA FEC 2008
=> disruption

No-Wall(n=00) Resistive-Wall Ideal-Wall(n=0)
[
Boundary Condition (Wall Resistivity)



Rotation is responsible for @
RWM stability

About 20 years ago, theoretical papers identified that RWM can
be stabilized by plasma toroidal rotation [Bondeson, PoP. 1994
etc.].

However, prediction of threshold rotation frequency for
stabilizing RWM is still under discussion.
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Recent hot topic is the
Importance of non-ideal
MHD effects on RWM.
Question :

Even with ideal MHD model, e |
does plasma rotation always L n=1 o
stabilize RWM? 2 N ]
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‘ The answer is NO! et

RWM experimental results in JT-60U
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Basic equations solved numerically @

The ideal MHD stability code, MINERVA[AiIba, CPC 2009] solves
the Frieman-Rotenberg equation [Frieman, RMP 1960].

Zf +2p(u-9) % 55 ~F(©)

F(&) = Fs(§)+V®[p§®(u V)u—pu®(u-V)al=F (&) +F, (%),
F. : Force operator (same vector form as that in static equilibrium case)
u: Equilibrium rotation velocity

To identify RWM stability in tokamak plasmas, RWMacC [Shiraishi,
IAEA FEC 2012] is implemented to MINERVA.
Quadratic form for identifying RWM stability with rotation

0%¢ 0¢ Ta0 0Dy,
(¢ pﬁ> + 2(§[p(u- V)E_ (EIF(E)) + Wy — P T 0
MINERVA RWMaC

oWy,: vacuum energy
D,, : energy dissipated in the resistive wall 4127



RWM destabilization by rotation @

With MINERVA/RWMaC, we analyze impacts of toroidal
rotation on RWM stability in the equilibrium shown below.
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By = 5.0, Ip = 2.9[MA]
do = 31, qa = 4.6
(qmin= 2.03)

|deal wall position required for marginal
stability is the same in both normal shear and
reversed shear plasmas (d/al;jeoq = 1.43).

Rotation profile is given artificially as

Ny = Qq)o(l — 1P°)?wyo.

Q40: rotation freq. on axis

w40: Shear Alfven freq. on axis
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Rotation can destabilize MHD mode @32»
In reversed shear plasma
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RWM in the normal shear plasma is stabilized smoothly when
.Q¢0 > 0.04. ('quO — Q¢0/a)AO)

On the other hand, RWM in the reversed shear plasma is
once stabilized by rotation, but a MHD mode becomes
unstable again near Q40 = 0.07.

Mode structure of this re-destabilized mode has large
amplitude in high-By region (p,,; < 0.6).

=) \\hy does an unstable mode appear again? 6127



Rigid rotation also destabilize this mode@>

To simplify the problem, we replace rotation profile with rigid rotation
and neglect centrifugal force (C.F.) on equilibrium and Eg. of motion.
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« Since rigid rotation can recreate qualitatively this re-destabilized
mode, rotation shear and centrifugal force have only side-effects.
* Re-destabilized mode start to be unstable when £_1¢0 ~ (0.065.
* This mode appears from d/a near d/a|;goq(=1.43).
* The peak of y moves to smaller d/a as (4, Increases.
* Frequency of this mode is basically about O, but increases as
ﬁcpo becomes larger from 0.065 to 0.075. 2127



Theoretical works predicted  @2»
rotation can destabilize RWM

. In a cylindrical plasma, several theoretical works identified
that RWM can be destabilized due to

a. coupling between RWM and stable MHD discrete mode.
[Finn, PoP1996, Lashmore-Davies PoP2001 and JPP2005]

b. wall resistivity destabilizing negative energy modes.
[Lashmore-Davies, JPP2005, Hirota, PST2009]

Cc. resonance between stable MHD discrete mode and
continuum when their energies have opposite signs.
[Betti, PRL1995, Zheng, PRL2005, Hirota, PST2009]

Which is the strongest candidate as the origin of the re-
destabilized RWM in the present numerical result?

8127



Mode coupling is a strong candidate @@»
as the destabilizing mechanism

. In the schematic view, the
unstable mode in each region is
(1) Original RWM.
(2) Destabilized RWM/kink mode
due to mode coupling a).

(3) “Negative energy” kink mode
destabilized by wall resistivity b).
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The dependences of both y and w
on v, imply that the mode coupling
between RWM and discrete MHD
mode would play an important role
for destabilizing RWM again.

U:}UA h
What mode is responsible for this mode coupling
destabilization? 9/27



Only y of Re-destabilized RWM @Y
has By dependence

A [y scan is performed with (almost) fixed g profile.
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. The growth rate of re-destabilized RWM decreases as [y
becomes smaller.

=> Internal energy Is important for destabilizing RWM again.

. The rotation frequency destabilizing this mode is almost
unchanged as Q4,~0.07.

Stable Internal kink-ballooning like mode is one of
the candidates of re-destabilized RWM, but
unclear physics remains. 10/27




Summary @

. RWM in reversed shear plasma can become unstable again
by toroidal rotation even when this mode is once stabilized.

. This re-destabilization is thought to be related to the coupling
mechanism between RWM and stable MHD mode.

. This stable MHD mode is still unclear, but several numerical
results imply this has internal kink-ballooning like feature,
though the frequency doesn’t depend on plasma beta.
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