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Introduction : Alpha particle behavior is investigated

with a turbulent background

• Gyrokinetic simulation (PIC and Vlasov) are employed to investigate

energetic particle transport. a While the ITG turbulence signals are

self-consistent in those work, the energetic particle transport is not

self-consistent. The energetic particle transport is from an orbit following.

• We model the electromagnetic fluctuation in the form of ballooning type

drift-wave eigenmode structure

Φ(r, θ, ζ) =
∑

m/n

Φm/n(r) exp [−(r − rm/n)
2/δ2] exp i(mθ − nζ + ω⋆t)

allows us to see one to one correlation between the transport and the free

parameters. The latter Weber type “(Hermite polynomials × Gaussian) ”

function is the eigen-solution of the ballooning equation.b

ae.g. C. Estrada-Milla Phys. Plasmas 13, 112303 (2006), W. Zhang, Z. Lin, and L. Chen,

Phys. Rev. Lett. 101, 095001 (2008). T. Hauff et al. Phys. Rev. Lett. 102, 075004 (2009).
bJ. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. London A 365, 1 (1979).



The linear and nonlinear toroidal driftwave

structure are plotted on a poloidal plane
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Toroidal drift eigenmode structure is applied to the analysis.a (Left) Φ(r, θ)

with n = 10 only and (Right) Φ(r, θ) with 10 ≤ n ≤ 20 profiles plotted on a

poloidal plane. Note the ballooning structure on a bad curvature side. The

turbulent background with finite ω⋆. Parameters q = 1 + 2r2/a2 (0 ≤ r ≤ a),

10 ≤ n ≤ 20, ω⋆/Ωci ∼ 0.01.
aC.Z.Cheng, Phys. Fluids 25, 1020 (1982).



The guiding center equation is solved in three

dimensional geometry

• The guiding center equation by Euler-Lagrange equation is given by

operating ×b̂ and ·b̂ :

Ẋ = v‖
B⋆

B⋆
‖

+
1

qB⋆
‖

b× (µ∇B − qE⋆)

v̇‖ = −
B⋆

mB⋆
‖

· (µ∇B − qE⋆)

• The magnetic field at an equilibrium is given by

Bcov = G (ψ)∇ζ + I (ψ)∇θ + δ (ψ, θ, ζ)∇ψ

Bclebsch = ∇ψ ×∇θ +∇ζ ×∇χ = ∇ψ ×∇(θ − ζ/q)

• Normalization by minor radius a, cyclotron frequency Ωc of the test particle

(α or lower energy ions), magnetic field strength at the axis B0, and a
2ΩB0

for the electrostatic potential.



• Each component of the guiding center equation for (r, θ, ζ, and v‖) is given

by (hereafter quantities are normalized quantities)

dr

dt
= −εµ sin (θ)−

∑

n

∑

m

(

−m

r

)

Φm/ne
−(r−rm/n)2

d2 sin (mθ − nζ + δn + ω⋆,nt),

dθ

dt
=

εv‖
q(r)

− (εµ/r) cos (θ),

dζ

dt
= εv‖,

dv‖
dt

= −
ε2µ sin (θ)

q(r)r

+
∑

n

∑

m

[m/q(r)− n] Φm/ne
−(r−rm/n)2

d2 sin (mθ − nζ + δn + ω⋆,nt).

Here the inverse aspect ratio is given by ε = a/R0.



Larger the energy smaller the radial transport

• Particle transport in the presence of time dependent turbulent

signal.
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• Larger the energy (higher the bounce frequency) smaller the

radial transport (J conserves for high energy particles).



Passing particles form electric islands at each

mode rational surface

• Particle transport in the presence of linear n = 10 eigenmodes for the

demonstration purpose (a) 1.5 keV ions and (B) alpha particles.
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• The island width is larger for lower energy particles.



• To see the parallel velocity dependence of the island widths, let us start from

guiding center equation in flux coordinates for the (r, θ, ζ, v‖) components:

dr

dt
=

∑

n

∑

m

(

−m

r

)

Φm/n sin (mθ − nζ + ω⋆,nt),

dθ

dt
=

εv‖

q(r)
,

dζ

dt
= εv‖,

and dv‖/dt = 0. The toroidal angle ζ behaves as a time like coordinate. By

expanding the safety factor in the vicinity of mode rational surface rm/n,

dX

dt
=

(

−m

rm/n

)(

Φm/n

εv‖

)

sin (Y +Ωζ),

dY

dt
=

−msm/n

qm/n
X,

where X = r − rm/n, Y = mθ − nζ, Ω = (ω⋆,n/εv‖), and

sm/n = (dq/dr)m/n/qm/n is the shear parameter.



• This will give rise to a Hamiltonian of the form

H (X,Y, ζ) =

(

msm/n

qm/n

)

X2

2
−

(

m

rm/n

)(

Φm/n

εv‖

)

cos (Y + Ω⋆ζ)

whose separatrix equation is given by

X = ±2

(

Φm/n

εv‖

)1/2 ( qm/n

rm/nsm/n

)1/2

cos

(

Y +Ω⋆ζ

2

)

which demonstrates clear ∼ v
−1/2
‖ dependence on the island width. Island

width of the simulation matches exactly. Net E ×B drift is larger for the

slower particles which spends longer time at the same phase of the driftwave.

• Finite drift wave frequency (ω⋆ effect) gives rise to the shift of the resonant

location.



Passing particles become stochastic in the

presence of multiple toroidal mode numbers

• Particle transport in the presence of (a) n = 10 and n = 11 and (b)

10 ≤ n ≤ 50. Both for the 1.5keV ions.
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• Island chains are densely formed at mode rational surfaces, easily overlap.



Adiabatic invariant persists for trapped particles

• Poincare plot of trapped particles for (a) 1.5keV and (b) alpha particles.
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• “J”does not easily break. Seemingly diffusive but can return after long but

finite period. Secondary island formation can be found in the action-angle

space when the precession frequency becomes comparable to ωb.



• The normalized guiding center Hamiltonian is given by

H
(

v‖, θ, t
)

=
v2‖
2

+ µB(r, θ) + Φ(r, θ, ζ)

=
v2‖
2

+ µB0 [1− εr cos (θ)] +
∑

n,m

Φm/n(r) cos (mθ − nζ + ω⋆,nt).

• Moving to J −Θ space (J =
∫

v‖dl) allows us to examine generation of

secondary islands. The Hamiltonian is separated into

H (J,Θ, t) = H0 (J) +H1 (J,Θ, t) ,

where ζ = Ωζt+A sinωbt (ωb is the banana’s bounce frequency). By a

Fourier expansion in the new angle Θ,

H1 (J,Θ, t) =
∑

m,n

∑

l

amnl(J)

(

cos

sin

)

(lΘ− nΩζt)

amnl =
1

π

∫ π

−π

(

cos

sin

)

(mθ (Θ))

(

cos

sin

)

(lΘ)dΘ.



whereas, the equation of motion is given by

dJ

dt
=

∑

m,n

∑

l

laml(J)

(

sin

− cos

)

[lΘ− nΩζt]

dΘ

dt
= ωb (J) .

Substitutiong Θ = Ωt into dJ/dt equation, the resonant condition is given by

lωb − nΩζ = 0.

and thus the resonant secondary Fourier modes are given by l = nΩζ/ωb.

Note that Ωζ is the toroidal precession frequency. By singling out a cosine

term, the separatirix equation is given by

J = ±2 (amnl)
1/2

cos

(

lΘ− Ωζt

2

)



• Secondary island chains are formed in (a) the velocity space, (b) in

configuration space for the alpha particle.
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Whether particles are stochastic or not is

examined by Lyapunov exponents

• Lyapunov exponents are estimated in the Cartesian coordinate by a mapping

from flux coordinate (and then back from Cartesian to flux coordinate to

push the accompanying test particles).

• (a) Stochastic (15keV passing ion at qm/n = 5/2, (b) regular passing alphas

and (c) trapped 15keV ion.
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Particle diffusion is estimated

• When the banana width becomes comparable to the diffusion random step

size (alpha particles for example), a direct estimation D ∼ (r − r0)
2 becomes

troublesome. We estimate diffusion rate at a fixed θ = 0 instead.
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Summary and discussions

• Guiding center orbit following calculation is discussed in the presence of

driftwave turbulence signal in a toroidal geometry.

• Transport is smaller for the high energy particles due to ∼ v
−1/2
‖ dependence

of the island width (net E ×B drift is larger for the slower particles). Finite

drift wave frequency (ω⋆ effect) gives rise to the shift of the resonant location.

• For trapped particles, the effective E ×B drift becomes extremely large and

contributes to the radial transport at the banana tip (from the same

mechanism as in the passing).

• Second adiabatic invariant tend to persist for trapped particles. When the

precession frequency can be comparable to the bounce frequency for fast

particles, secondary islands are formed in the J −Θ space and in the

configuration space, correspondingly.


