

Three-Dimensional MHD Analysis of Pressure Driven Modes in RMP-Imposed LHD Plasmas

K. ICHIGUCHI, Y. SUZUKI, M.SATO, S.SAKAKIBARA, S.OHDACHI, Y. NARUSHIMA

(National Institute for Fusion Science, JAPAN)

第19回NEXT研究会 @京都大学桂キャンパス 2013年8月29日--8月30日

PURPOSE : Effects of m=1/n=1 RMP on MHD Stability in LHD configuration

Cylindrical Analysis

Equilibrium Calculation — FLEC code		Equilibrium Calculation — HINT2 code		
Numerical Scheme of FLEC code	Rotational transform without RMP	Numerical Scheme of HINT2 code	Profile of Rotational Transfo	orm without RMP
Initial condition		Initial values : magnetic field pressure distribution	2.0 , , , , , , , , , , , , , , , , , , ,	

3D Analysis

In the cylindrical case, the RMP has a stabilizing effect on the interchange mode.

In the 3D case, the RMP has a destabilizing effect on the interchange mode.

The mode structure is changed from the interchange type to the ballooning type, which localized at the X-point, even in the small m case (large viscosity). The destabilization is attributed to

1) the localization at the X-point is allowed, where the pressure gradient is maximum around the island

2) the pressure gradient is steeper than that without RMP.

More systematic analysis will be needed.