

Neoclassical toroidal viscosity from toroidal ripples in JT60–SA

<u>S. Satake</u>, Y. Suzuki and M. Honda¹ National Institute for Fusion Science Collaborators from Japan Atomic Energy Agency¹: G. Matsunaga, S. Ide, M. Yoshida, and N. Hayashi

2013/8/29,30 19th NEXT Workshop @ Kyoto Univ., Katsura

Outline

- 1. Neoclassical toroidal viscosity in tokamaks
- 2. Toroidal field ripples in JT-60 SA
- 3. NTV calculation by FORTEC-3D
- 4. Combined simulation model for toroidal rotation by TOPICS/VMEC/FORTEC-3D
- 5. Demonstration in a JT-60SA configuration
- 6. Summary and Future Plan

1. Neoclassical toroidal viscosity in tokamaks

- If a tokamak magnetic field has any broken symmetry in toroidal direction, 3-dimensional effects appears in neoclassical transport phenomena as it is considered in helical plasmas.
- One of the important effects from the incomplete symmetry is the neoclassical toroidal viscosity (NTV), which decelerate / accelerate plasma toroidal rotation.

$$\left\langle \frac{\partial}{\partial t} mn \mathbf{u} \cdot \mathbf{e}_{\zeta} \right\rangle = -\left\langle \underbrace{\mathbf{e}_{\zeta} \cdot \nabla \cdot \overset{\leftrightarrow}{\mathbf{P}}}_{\mathbf{N} \mathbf{V}} \right\rangle + \iota \left\langle \mathbf{J} \cdot \nabla \psi \right\rangle + \left\langle \mathbf{e}_{\zeta} \cdot (\mathbf{F} + \mathbf{S}_{m}) \right\rangle$$

$$\overline{\mathbf{N} \mathbf{V}} \qquad \overline{\mathbf{J} \times \mathbf{B} \text{ torque}} \qquad \overline{\mathbf{Friction \& momentum source}}$$

- Recent tokamak experiments have revealed that even very weak asymmetric magnetic perturbation [$\delta B/B_0 = 10^{-3} \sim 10^{-4}$] by RMP (resonant magnetic perturbation) coils can create NTV that damps the toroidal rotation substantially.
- Therefore, accurate calculation method for NTV from weak perturbation is required to predict & control the effect of magnetic perturbations on plasma rotation.

2. Toroidal field ripples in JT-60 SA

- Without external magnetic perturbation, tokamak are not perfectly axisymmetric.
 - Toroidal field ripples due to discrete toroidal field coils (in JT-60SA case, 18 TF coils)
 - Error field due to inperfect manufacture or installation of the coils
 - Iron materials inserted into the vacuum vessels
- Here we consider TF coil ripples in JT-60SA.
 - > 2D MHD equilibrium is first solved by TOPICS code.
 - > Then send the result to VMEC, where finite- β 3D equilibrium with TF coil ripples is solved.
 - The 3D MHD equilibrium is used to evaluate NTV by FORTEC-3D code.
 - ➢ In an example JT-60SA operation scenario, the relative amplitude of the toroidal ripple is ~0.7%.

3. NTV calculation by FORTEC-3D

• FORTEC-3D code solves the drift-kinetic equation for $\delta f = f - f_M$ in 3D magnetic field according to the two-weight δf Monte Carlo method:

$$\frac{D}{Dt}\delta f \equiv \left[\frac{\partial}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_{d}) \cdot \nabla + \dot{\mathcal{K}}\frac{d}{d\mathcal{K}}\right]\delta f - C_{TP}(\delta f) = -\left[\mathbf{v}_{d} \cdot \nabla + \dot{\mathcal{K}}\frac{d}{d\mathcal{K}} - \mathcal{P}\right]f_{M}.$$

• Then the pressure tensor and NTV are directly evaluated from the perturbed distribution function δf :

$$\begin{aligned} &\overleftrightarrow{\mathbf{P}} = p_0(\psi) \overleftrightarrow{\mathbf{I}} + \delta P_{\parallel} \mathbf{b} \mathbf{b} + \delta P_{\perp} (\overleftrightarrow{\mathbf{I}} - \mathbf{b} \mathbf{b}), \\ &\left\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \overleftrightarrow{\mathbf{P}} \right\rangle = \frac{1}{2} \left\langle \frac{\partial}{\partial \zeta} \delta P \right\rangle, \quad \delta P = \delta P_{\parallel} + \delta P_{\perp} = m \int d^3 v (v_{\parallel}^2 / 2 + v_{\perp}^2) \delta f. \end{aligned}$$

• Instead of evaluating $\partial P/\partial \zeta$ directly, we make use of the fact that the magnetic field *B* in FORTEC-3D is given in Fourier series in Boozer coordinates.

$$B(\psi,\theta,\zeta) = B_0 \left[1 - \sum_{m \ge 1} \epsilon_m(\psi) \cos(m\theta) + \sum_{m \ge 0, n \ne 0} \delta_{m,n}(\psi) \cos(m\theta - n\zeta) \right]$$

The toroidal viscosity is evaluated by Fourier decomposition in the following form:

$$\left\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \overleftrightarrow{\mathbf{P}} \right\rangle = \sum_{m,n} \left\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \overleftrightarrow{\mathbf{P}} \right\rangle_{m,n} = B_0 \sum_{m,n} n \delta_{m,n} Q_{m,n} .$$

where $Q_{m,n} \equiv \left\langle \frac{\delta P}{B} \sin(m\theta - n\zeta) \right\rangle.$

(Note that present FORTEC-3D can treat only up-down symmetric tokamak configuration.)

4. Combined simulation model for toroidal rotation by TOPICS/VMEC/FORTEC-3D

6. Demonstration in a JT-60SA configuration

- Initial setup is calculated by TOPICS code as shown in the figure.
- NBI 30MW: co N-NBI 10MW, co tang 3.6MW, ctr tang 3.6MW, co perp 9.6MW, ctr perp 3.2MW.
- No RMP is applied.

(figures from M. Honda, EPS 2013)

- The radial electric field E_r , which is determined from the toroidal rotation speed V_{ϕ} and the radial force balance, is sent to FORTEC-3D as input parameters for NC transport simulation as well as n and T profiles.
- Only D ion is considered in FORTEC-3D, and friction b/w Carbon impurity is neglected.
- Iterative simulation between TOPICS and FORTEC-3D is carried out until V_{ϕ} saturates.
- Single FORTEC-3D simulation takes 15~20 hours on HELIOS using 256 MPIs × 8 SMPs.

Time evolution of toroidal rotation in iterative simulation

- After 3 times iteration b/w TOPICS and FORTEC-3D, V_{ϕ} and NTV have reached almost a saturated state.
- *E_r* and NTV profiles have strong shear at the edge since large pressure gradient exists there.
- Radial force balance (relation among E_r , V_{ϕ} , and ∇p) determines the E_r profile, and then E_r affects NTV profile.

Radial profile of NTV solved by FORTEC-3D for the given $E \times B$ rotation profiles shown in the right figure.

Time evolution of toroidal angular momentum and given torque input in TOPICS code.

Effect of NTV from TF ripples on toroidal rotation

- In the present case, toroidal torque from NTV is comparable to that of NBI.
- NTV torque acts to damp the toroidal rotation driven by NBI.
- The NTV torque on Deuterium damps the bulk plasma rotation. FORTEC-3D does not solve NTV for impurity Carbon, but the Carbon rotation speed also changes in TOPICS as a result of friction between the ion species.

Toroidal rotation speed of D and C ions in the initial state and final state in the simulation.

6. Summary and Future Plan

- It has been demonstrated that the combined simulation model by TOPICS / VMEC / FORTEC-3D can be applied to predict the toroidal rotation profile under the effect of neoclassical toroidal viscosity from TF ripples.
- It is found that the NTV from TF ripples can be comparable to NBI torque and changes the toroidal rotation profile substantially.
- For verification / validation of the combined simulation model, we plan to analyze the experimental observations from previous JT-60U operations before and after the ferritic steel was inserted to reduce the TF ripples.
- To conduct FORTEC-3D simulation for more realistic tokamak configurations, the code is being extended to up-down asymmetric geometry including the effect of external RMPs.