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• Equilibrium with flow in fusion plasmas 
 - In improved confinement modes of magnetically confined plasmas, 

equilibrium toroidal and poloidal flows play important roles like the 
suppression of instability and turbulent transport.  

• Pressure anisotropy in plasma flow 
 - Plasma flows driven by neutral beam injection indicate strong pressure 

anisotropy.  

• Small scale effects in MHD equilibria 
 - Equilibrium models with small scale effects may be suitable for modeling  

steady states of improved confinement modes that have steep plasma 
profiles and for initial states of multi-scale simulation. 

 - Two-fluid equilibria with flow and pressure anisotropy was studied for the 
case of cold ions [Ito, Ramos and Nakajima, PoP 14, 062502 (2007)]. 

 - However, finite ion Larmor radius effects may be relevant for high-
temperature plasmas in magnetic confinement fusion devices. 
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Equilibrium with flow in extended MHD models of fusion 
plasmas 



• Equilibrium with flow in reduced MHD models 
 - Fluid moments in collisionless, magnetized plasmas are simplified 
 - Grad-Shafranov type equilibrium equations can be easily derived even in 

the presence of flow and several small scale effects. 
 - Basic physics of flow and non-ideal effects can be investigated. 
 - Reduced equilibrium models 

 Two-fluid MHD, FLR, poloidal Alfvenic flow  
 [Ito, Ramos and Nakajima, PFR 3, 034 (2008)] 
 MHD, poloidal sonic flow  
 [Ito, Ramos and Nakajima, PFR 3, 034 (2008)] 
 [Ito and Nakajima, PPCF 51, 035007 (2009)] 
 Two-fluid MHD, FLR, poloidal sonic flow, isotropic pressure 

        [Ito and Nakajima, AIP Conf. Proc. 1069, 121 (2008)] 
         [Raburn and Fukuyama, PoP 17, 122504 (2010)] 
  assumed adiabatic pressure and parallel heat flux was neglected 

 Two-fluid MHD, FLR, poloidal sonic flow, anisotropic pressure  
 [Ito and Nakajima, NF 51, 123006 (2011)] 
 Parallel heat flux with fluid closure is taken into account. 



• Compressible high-β tokamak and slow dynamics orderings 
    - Large aspect ratio and high-β tokamak 
 
 
 
 
 
    - Weak compressibility 
  
  
  The fast magnetosonic wave is eliminated.  
    - Flow velocity for slow dynamics 
 
 
 
• Flow velocity comparable to the poloidal sound velocity 
 
    - Transition between sub- and super-poloidal-sonic flow appears. 
 - Higher-order terms should be taken into account. 
• Strong pressure anisotropy: 
• Parallel heat flux can not be neglected: 
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 - Two-fluid equilibrium equations with ion FLR 

• Equilibrium equations in extended-MHD  
 - Fluid-moment equations for magnetized collisionless plasmas  
    [Ramos, PoP 12 052102 (2005)] 
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i pεΠ ∼ FLR effect (λi): ion gyroviscosity 

 Two-fluid effects (λH): Hall current and electron pressure 

- Electron inertia is neglected: 0em ≈
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 - Equations for anisotropic ion and electron pressures  
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 - Parallel heat flux: 
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- Strong pressure anisotropy: 
- Parallel and perpendicular heat flux: 

p p p⊥−




q q pv⊥

 



( )
0,

3
0,

2

i iT iT i

i i ii i

i i

i i
i

i

B

i

i
i

i

p q q p
neB neB

p p pp p B
m n m nB

p p
p q

neB m n

λ λ

λ

⊥ ⊥

⊥ ⊥⊥

⊥

    ∇ ⋅ + ∇ × + ∇ ⋅ + ∇ ×        
− + ⋅∇ − ⋅∇ 

 

   ∇ ⋅ + ∇ × + ⋅∇        

v b v b

b b

v b b

 





 







 - Parallel heat flux equations for ions 
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 - Parallel heat flux equations for mass-less electrons, 0em ≈

 Electron pressure is obtained from the parallel heat flux equations. 
 Electron parallel heat flux is obtained from the pressure equations. 

i iB iT
 q q q
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 Kinetic effects in the fourth-order moments are neglected 

[Ramos, PoP 15 082106 (2008)] 



• Reduced equilibrium equations 
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 - Lowest order quantities are functions of 1ψ

 - Asymptotic expansions: 

 - Axisymmetric equilibria: 
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Gyroviscous cancellation 
 (FLR effect) 

( ) ( )1 1, :E diV Vψ ψ Poloidal Alfven Mach numbers of the E×B drift and 
the ion diamagnetic drift velocities 

Pressure anisotropy 

- GS equation for         includes the effect of flow, FLR and pressure anisotropy: 

 - Poloidal force balance 
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Analytic solution for single-fluid, isotropic and adiabatic 
pressure case 

[A. Ito and N. Nakajima, Plasma Phys. Control. Fusion 51, 035007 
(2009] 

• Magnetic structure is modified to yield a forbidden region and 
the pressure surface departs from magnetic surface due to 
poloidal-sonic flow. 

 Shift of the magnetic axis 
from the geometric axis 

 Shift of the pressure maximum    

Beyond beta limit 



Magnetic surfaces 
(gray: static equilibrium) 

Pressure surfaces 
(gray: magnetic surfaces) 
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Sub-poloidal 
-sonic flow 

Super-poloidal 
-sonic flow 
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- The pressure maximum is shifted outwards for sub-poloidal-
sonic flow and inwards for super-poloidal-sonic flow  



Analytic solution for single-fluid equilibrium with flow 
and pressure anisotropy: 

[A. Ito and N. Nakajima, J. Phys. Soc. Jpn 82 (2013) 064502.] 
• Anisotropic, double adiabatic ion pressure, 

 Singularity 
 

 Qualitatively same as the isotropic case 
 
 
 

• Anisotropic ion pressure in the presence of the parallel heat flux, 
 
 Singularity 
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• Complicated characteristics in the region around the poloidal 
sound velocity due to pressure anisotropy and the parallel heat 
flux have been found 

• Dependences of poloidal sonic singularity on the pressure 
anisotropy for ions αi 
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In the shaded region ,the equilibrium is regular and the poloidal 
Mach number lies between the two singular points for all values 
of αi 



- Perpendicular (diamagnetic) current 
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Profiles of pressures and the magnetic flux in the midplane (Left) and the radial 
component of the diamagnetic current in a poloidal cross section (right) for the 
poloidal Mach number 0.45, αi=2.0 (top) and 0.75 (bottom). 

Decreasing ai with the poloidal Mach number fixed in the shaded region moves 
the equilibrium from the super poloidal sonic region to the sub poloidal sonic 
one similarly to how increasing the poloidal Mach number at a fixed ai does. 



1 2(1, ) 0, (1, ) 0.ψ θ ψ θ= =
• Boundary conditions:  

  Circular cross-section, 
  Up-down symmetry 

• Finite element method 
 GS Eq. for ψ1: nonlinear, solved iteratively 
 GS Eq. for ψ2: linear, solved by substituting ψ1   

• Numerical results for two-fluid equilibria  

Magnetic flux 
Total pressure 

Ion stream function 

-  Isosurfaces of each quantity do not coincide because of the  
      flow, pressure anisotropy and the two-fluid effects. 
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Numerical solution for the FLR two-fluid model 
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Red: same direction 
Blue: opposite direction 

- Solutions depend on the sign of E×B  flow compared to that of ion diamagnetic flow 
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Anisotropic pressures for ions and  
electrons are self-consistently obtained. 



Reduced MHD equations for stability of poloidal-sonic flow 
• Reduced-MHD equations with 

 - must include equilibria with poloidal-sonic flow when  
 - require the energy conservation up to   
 - are needed for stability of toroidal equilibria with strong poloidal flow 
• Derivation of the reduced equations for single-fluid MHD  
  We modify the reduced equations found by Strauss [Strauss, 1983] to apply   
  for high-beta plasmas with poloidal-sonic dynamics and non-constant density.  
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These equations contain shear Alfven and slow magnetosonic waves.  



•  Reduced equations for two-fluid equilibria with flow 
   - Two-fluid equilibria with toroidal and poloidal flow, ion FLR, pressure anisotropy  
      and parallel heat flux have been derived. 
•  Analytic solution for single-fluid equilibria 
   - The solution indicates the modification of the magnetic flux and the departure  
     of the pressure surfaces from the magnetic surfaces due to flow. 
   - Complicated characteristics in the region around the poloidal sound velocity due  
     to pressure anisotropy and the parallel heat flux have been found. 
•  Numerical solution for two-fluid equilibria with ion FLR 
   - The isosurfaces of the magnetic flux, the pressure and the ion stream function  
     do not coincide with each other.  
   - Pressure anisotropy associated with parallel heat flux has been included in the  
     numerical code. 
    - Solutions depend on the direction of E×B  flow compared to that of ion  
     diamagnetic flow. 
•Reduced MHD equations for stability of poloidal-sonic Flow 
   - We have derived reduced single-fluid MHD equations with time evolution  
      in order to study their stability of equilibria with poloidal-sonic flow 
   - We have shown that the energy is conserved up to the order required by  
      the equilibria.  

Summary 
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