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MHD code projects 

For laboratory plasmas 

 

 

 

 

 

 
 

 

Extended MHD model 

Not designed for shock capturing 

Project Developer MHD Scheme div B Grid 

(US) 

NIMROD Sovinec FEM(2D)+SP(1D) / implicit Diffusion Triangular 

M3D-C1 Ferraro, Jardin C1 FEM / implicit Vec. pot. Triangular 

(EU) 

XTOR-2F Lütjens FD(1D)+SP(2D) / NK implicit  ― Mag. Flux 

(Japan) 

MIPS Todo 4th FD / 4th RKG  ― Cylindrical 

MINOS Miura 8th Compact FD / 4th RKG  ― Curvilinear 

Any information or corrections are appreciated… 



Shocks in space plasmas 

 

Coronal activities (Hinode) 

Ubiquitous reconnection / jet (Hinode) 

Magnetosphere (SCOPE) 

Heliosphere (Artist’s image/NASA) 

Jet from black hole (ATCA) 

Petschek-type reconnection 



Motivation and objectives 

 In compressible MHD codes for laboratory plasmas, 

time integration methods have been polished so as 

to solve stiff problems. 

But, those codes are not designed for shock 

capturing that may be needed in the near future. 

(e.g., HiFi code at PSI-Center) 

Shocks and turbulence are universally observed in 

space. Thus, the development of robust shock 

capturing schemes has been highly progressed. 

Current status and challenges of the shock 

capturing scheme for MHD are presented with 

emphasis on our results. 



Compressible MHD equations 

 Ideal MHD equations (Non-conservative form) 

 

 

 

 

 

 
 

Various non-conservative forms can be 

obtained using vector identities 
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Compressible MHD equations 

 Ideal MHD equations (Conservative form) 
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Shock capturing scheme 

Non-conservative scheme 

Based on non-conservative form 

Converge to unphysical shock 

Hou-LeFloch [1994] 

Conservative scheme 

Based on conservative form 

Converge to physical shock 

Lax-Wendroff [1960] 

Harten [1980] 

Difficult to preserve positivity 

“Computational Tutorial: MHD”, Toth 
http://www.lorentzcenter.nl/lc/web/2011/441/presentations/Advanced_Toth.pdf 

Conservative vs Non-conservative 



Shock capturing scheme 

Non-conservative scheme 

Finite difference method 

Finite element method 

Conservative scheme 

Finite difference method 

FD-WENO, Compact FD+LAD, etc. 

Finite element method 

RKDG, etc. 

Finite volume method 

MUSCL, FV-WENO, etc. 



Shock capturing scheme 

1D finite volume method 

 

 

 

 

 

 

Numerical flux 
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Approximate Riemann solver 

Approximate Riemann solver 

 

 

Define piecewise constants 

  
















0dtdxdxdt

xt
FU

FU

U

x



Approximate Riemann solver 

Approximate Riemann solver 

 

 

Define piecewise constants 

Solve local Riemann problems 
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Riemann problem 

Riemann problem = Shock tube problem 

 7-waves can be excited in 1D MHD system 

   (shock, expansion wave, compound wave) 

 LRtx UUUU ,;t

RU
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Approximate Riemann solver 

Approximate Riemann solver 

 

 

Define piecewise constants 

Solve local Riemann problems 

Average state variables 
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Approximate Riemann solver 

Approximate Riemann solver 

 

 

Define piecewise constants 

Solve local Riemann problems 

Average state variables 

Derive numerical fluxes from conservation laws 

 

 
 

Depend on “quality” of approximate solutions! 
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Approximate Riemann solver 

Standard approximate Riemann solver 

 Lax-Friedrichs scheme [Lax, 1950’s] 

Godunov scheme [Godunov, 1959] 

Rusanov scheme [Rusanov, 1961] 

Roe scheme (HD) [Roe, 1981] 

HLL scheme [Harten+, 1983] 

Roe scheme (MHD) [Brio+, 1988] 

HLLC scheme (HD) [Toro+, 1994; Batten+, 1997] 

HLLC scheme (MHD) [Gurski, 2004; Li, 2005] 

HLLD scheme (MHD) [Miyoshi+, 2005] 



HLL approximate Riemann solver 

HLL Riemann solver [Harten+, 1983] 

Conservation laws 

 2-waves approximation 

 

 

 

 

 

 
 

CD/TD/RD cannot be resolved 

LRS , ：max./min. speeds 
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HLL approximate Riemann solver 

HLL Riemann solver [Harten+, 1983] 

Conservation laws 

 2-waves approximation 

 

 

 

 

 

 
 

CD/TD/RD cannot be resolved 

LRS , ：max./min. speeds 
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HLLD approximate Riemann solver 

HLLD Riemann solver [Miyoshi+, 2005] 

Conservation laws 

 5-waves approximation 

LRS , ：fast magnetosonic wave 
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HLLD approximate Riemann solver 

The HLLD Riemann solver 

 is constructed without eigenvectors 

 exactly resolves isolated CD/TD/RD/FS 

 preserves density and pressure positivities 

High-efficiency! High-resolution! Robust! 



HLLD approximate Riemann solver 

Established as a standard Riemann solver 

Comparing numerical methods [Kritsuk+, 2011] 

 

 

 

 

 

 

Athena (US), CANS+ (Japan), and many other 

researches 



Challenges 

Challenges to multi-D MHD scheme 

Comparing numerical methods [Kritsuk+, 2011] 



Challenges to multi-D 

Treatment of numerical magnetic monopole 

 

 

 

 

 

 

Negative effect due to unphysical magnetic force 

 

Need divergece-free/divergence-cleaning method! 

（with correction） （without correction） 
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Challenges to multi-D 

Treatment of numerical magnetic monopole 

Can numerical simulations 

preserve ∇・B = 0? 



Challenges to multi-D 

Numerical shock instabilities 

Odd-even decoupling 

 

 
 

 

Carbuncle phenomena 

(HLLD) 

(HLLD－) 

(Roe) 

(HLLC－) (HLLC) 
(HLLD－) (HLLD) 



Challenges 

Challenges to higher-order MHD scheme 

Comparing numerical methods [Kritsuk+, 2011] 



Challenges to higher-order 

 Importance of higher-order methods 

Error of nth-order method vs. Computational cost 
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Challenges to higher-order 

Godunov’s theorem 

Any linear monotone scheme (non-oscillatory 

scheme) can be at most first-order accurate 

This statement suggests that higher-order non-

oscillatory scheme can be constructed as a 

nonlinear scheme 

TVD, MUSCL, PPM, WENO, etc. 

Very-high-order WENO 

(up to 17th-order) 

[Gerolymos+, 2009] 



Challenges 

Multi-dimensional higher-order divergence-free 

scheme is one of the goals of  shock capturing 

scheme for MHD 



Summary 

 I have reported current status and challenges of 

robust shock capturing schemes for MHD 

The HLLD has been established as a standard 

MHD solver in the field of astrophysics 

Multi-D shock capturing scheme for MHD is one 

of the challenges 

Treatment of numerical magnetic monopole 

Treatment of numerical shock instabilities 

Higher-order shock capturing scheme for MHD is 

one of the challenges 

Study on shock capturing scheme for two-fluid / 

extended MHD is now progressing…  


