

第20回NEXT(数値トカマク)研究会 2015年1月13日(火)-1月14日(水) 京都テルサ

圧縮性MHDに対する ロバストな数値計算法の開発

Development of a robust scheme for compressible MHD

三好 隆博 広島大学大学院理学研究科

For laboratory plasmas

Project	Developer	MHD Scheme	div B	Grid
(US)				
NIMROD	Sovinec	FEM(2D)+SP(1D) / implicit	Diffusion	Triangular
M3D-C ¹	Ferraro, Jardin	C ¹ FEM / implicit	Vec. pot.	Triangular
(EU)				
XTOR-2F	Lütjens	FD(1D)+SP(2D) / NK implicit	—	Mag. Flux
(Japan)				
MIPS	Todo	4th FD / 4th RKG		Cylindrical
MINOS	Miura	8th Compact FD / 4th RKG		Curvilinear

Any information or corrections are appreciated...

Extended MHD model

Not designed for shock capturing

Shocks in space plasmas

Ultraviolet GALEX

21 Petschek-type reconnection

21"

HST · WFPC2

Jets from Young Stars PRC95-24a · ST ScI OPO · June 6, 1995 C. Burrows (ST ScI), J. Hester (AZ State U.), J. Morse (ST ScI), NASA

Motivation and objectives

- In compressible MHD codes for laboratory plasmas, time integration methods have been polished so as to solve stiff problems.
- But, those codes are not designed for shock capturing that may be needed in the near future. (e.g., HiFi code at PSI-Center)
- Shocks and turbulence are universally observed in space. Thus, the development of robust shock capturing schemes has been highly progressed.
- Current status and challenges of the shock capturing scheme for MHD are presented with emphasis on our results.

Compressible MHD equations

□ Ideal MHD equations (Non-conservative form)

Various non-conservative forms can be obtained using vector identities

Compressible MHD equations

□ Ideal MHD equations (Conservative form)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 & : \text{massconservation} \\ \frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v v + p_T I - BB) &= 0 & : \text{momentumconservation} \\ \frac{\partial e}{\partial t} + \nabla \cdot [(e + p_T) v - B(v \cdot B)] &= 0 & : \text{energyconservation} \\ \frac{\partial B}{\partial t} + \nabla \cdot (vB - Bv) &= 0 & : \text{flux conservation} \\ \nabla \cdot B &= 0 , \quad p = (\gamma - 1) \left(e - \frac{\rho v^2}{2} - \frac{B^2}{2} \right), \quad p_T = p + \frac{B^2}{2} \end{aligned}$$

Shock capturing scheme

Non-conservative scheme

- Based on non-conservative form
- Converge to unphysical shock Hou-LeFloch [1994]

Conservative scheme

- Based on conservative form
- Converge to physical shock Lax-Wendroff [1960] Harten [1980]
- Difficult to preserve positivity

Conservative vs Non-conservative

"Computational Tutorial: MHD", Toth

http://www.lorentzcenter.nl/lc/web/2011/441/presentations/Advanced_Toth.pdf

Shock capturing scheme

Non-conservative scheme

- Finite difference method
- Finite element method
- Conservative scheme
 - Finite difference method
 DFD-WENO, Compact FD+LAD, etc.
 - Finite element methodRKDG, etc.
 - Finite volume methodMUSCL, FV-WENO, etc.

Shock capturing scheme

1D finite volume method

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0 \Longrightarrow \frac{d}{dt} \overline{u}_i + \frac{f(u(x_{i+1/2}, t)) - f(u(x_{i-1/2}, t))}{\Delta x} = 0$$

Numerical flux

$$f(u(x_{i+1/2},t)) \equiv f_{i+1/2} = f(\cdots,\overline{u}_{i-1},\overline{u}_i,\overline{u}_{i+1},\overline{u}_{i+2},\cdots)$$

Approximate Riemann solver

$$\iint \left(\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} \right) dx dt = \oint \left(\boldsymbol{U} dx - \boldsymbol{F} dt \right) = 0 \quad \boldsymbol{U}$$

Define piecewise constants

Approximate Riemann solver

$$\iint \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x}\right) dx dt = \oint \left(U dx - F dt\right) = 0 \quad U$$

Define piecewise constantsSolve local Riemann problems

 \boldsymbol{U}_{L}

□ Riemann problem = Shock tube problem

7-waves can be excited in 1D MHD system (shock, expansion wave, compound wave)

$$t \uparrow U = U(x/t; U_R, U_L)$$

 $\boldsymbol{U}_{\scriptscriptstyle R}$

Х

FS / FR RD SS / SR CD SS / SR RD FS / FR

Approximate Riemann solver

$$\iint \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x}\right) dx dt = \oint \left(U dx - F dt\right) = 0$$

Define piecewise constants
 Solve local Riemann problems
 Average state variables

Approximate Riemann solver

$$\iint \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x}\right) dx dt = \oint \left(U dx - F dt\right) = 0$$

Define piecewise constants

- Solve local Riemann problems
- Average state variables

Derive numerical fluxes from conservation laws

$$\int_{x_{i}}^{x_{i+1/2}} U\left(\frac{x - x_{i+1/2}}{\Delta t}; U_{i}^{n}, U_{i+1}^{n}\right) dx - (x_{i+1/2} - x_{i}) U_{i}^{n} + \Delta t \left(\underline{F_{i+1/2}} - F_{i}^{n}\right) = 0$$

Depend on "quality" of approximate solutions!

Standard approximate Riemann solver

- Lax-Friedrichs scheme [Lax, 1950's]
- Godunov scheme [Godunov, 1959]
- Rusanov scheme [Rusanov, 1961]
- Roe scheme (HD) [Roe, 1981]
- HLL scheme [Harten+, 1983]
- Roe scheme (MHD) [Brio+, 1988]
- HLLC scheme (HD) [Toro+, 1994; Batten+, 1997]
- HLLC scheme (MHD) [Gurski, 2004; Li, 2005]
- HLLD scheme (MHD) [Miyoshi+, 2005]

HLL approximate Riemann solver

□ HLL Riemann solver [Harten+, 1983]

- Conservation laws
- 2-waves approximation

 $S_{R,L}$: max./min. speeds

$$S_{R} = \max(u_{L} + c_{L}, u_{R} + c_{R}, 0)$$

$$S_{L} = \min(u_{L} - c_{L}, u_{R} - c_{R}, 0)$$

 $\oint (\boldsymbol{U}d\boldsymbol{x} - \boldsymbol{F}d\boldsymbol{t}) = 0 \Longrightarrow (\boldsymbol{S}_{R} - \boldsymbol{S}_{L})\boldsymbol{U}^{*} - \boldsymbol{S}_{R}\boldsymbol{U}_{R} + \boldsymbol{S}_{L}\boldsymbol{U}_{L} + \boldsymbol{F}_{R} - \boldsymbol{F}_{L} = 0$

CD/TD/RD cannot be resolved

HLL approximate Riemann solver

□ HLL Riemann solver [Harten+, 1983]

Conservation laws

 F^*

i + 1/2

 \boldsymbol{U}_{I}

 S_L

 \boldsymbol{F}_{L}

2-waves approximation

 U^*

 $S_{R,L}$: max./min. speeds

$$S_{R} = \max(u_{L} + c_{L}, u_{R} + c_{R}, 0)$$

$$S_{L} = \min(u_{L} - c_{L}, u_{R} - c_{R}, 0)$$

$$\oint (\boldsymbol{U}d\boldsymbol{x} - \boldsymbol{F}d\boldsymbol{t}) = 0 \Longrightarrow S_{R}\boldsymbol{U}^{*} - S_{R}\boldsymbol{U}_{R} + \boldsymbol{F}_{R} - \boldsymbol{F}^{*} = 0$$

 S_{R}

 \boldsymbol{F}_{R}

Х

CD/TD/RD cannot be resolved

 \boldsymbol{U}_{R}

HLLD approximate Riemann solver

□ HLLD Riemann solver [Miyoshi+, 2005]

 U_R

Conservation laws

 S_L

 U_{I}

 \boldsymbol{F}_{L}

■ 5-waves approximation

 S_M, p_T

i + 1/2

 $S_L^* t \uparrow S_M S_R^* S_R$

 $S_{R,L}$: fast magnetosonic wave S_M : entropy wave $S_{R,L}^*$: Alfvén wave

$$S_{R,L} \left(\boldsymbol{U}_{R,L}^{*} - \boldsymbol{U}_{R,L} \right) = \boldsymbol{F}_{R,L}^{*} - \boldsymbol{F}_{R,L}, \ S_{R,L}^{*} \left(\boldsymbol{U}_{R,L}^{**} - \boldsymbol{U}_{R,L}^{*} \right) = \boldsymbol{F}_{R,L}^{**} - \boldsymbol{F}_{R,L}^{*},$$

$$S_{M} \left(\boldsymbol{U}_{R}^{**} - \boldsymbol{U}_{L}^{**} \right) = \boldsymbol{F}_{R}^{**} - \boldsymbol{F}_{L}^{**}, \ \frac{1}{\Delta t} \int_{S_{L} \Delta t}^{S_{R} \Delta t} \boldsymbol{U} \left(\boldsymbol{x}, t^{n+1} \right) d\boldsymbol{x} + S_{R} \boldsymbol{U}_{R} - S_{L} \boldsymbol{U}_{L} + \boldsymbol{F}_{R} - \boldsymbol{F}_{L} = 0$$

X

 F_{R}

HLLD approximate Riemann solver

The HLLD Riemann solver

- is constructed without eigenvectors
- exactly resolves isolated CD/TD/RD/FS
- preserves density and pressure positivities
- High-efficiency! High-resolution! Robust!

HLLD approximate Riemann solver

Established as a standard Riemann solver

Comparing numerical methods [Kritsuk+, 2011]

 Table 2

 Solver Design Specifications for the Eulerian Methods^a

Name	Base Scheme ^b	Spatial Order ^c	Source Terms ^d	MHD ^e	Time Integration ^f	Directional Splitting ^g
ENZO	FV, HLL	Second	Dedner	Dedner	Second-order RK	Direct
FLASH	FV, HLLD	Second	11 Derivative	Third-order CT	Forward Euler	⊥ Reconstruction
KT-MHD	FD, CWENO	Third	KT	Third-order CT	Fourth-order RK	Direct
LL-MHD	FV, HLLD	Second	None	Athena CT	Forward Euler	Split
PLUTO	FV, HLLD	Third	Powell	Powell	Fourth-order RK	Direct
PPML	FV, HLLD	Third	None	Athena CT	Forward Euler	⊥ Reconstruction
RAMSES	FV, HLLD	Second	None	2D HLLD CT	Forward Euler	⊥ Reconstruction
STAGGER	FD, Stagger	Sixth	Tensor	Staggered CT	Third-order Hyman	Direct
ZEUS	FD, van Leer	Second	von Neumann	MOC-CT	Forward Euler	Split

Notes.

^a See Section 3 and the indicated sections on each topic for more information.

^b Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.

^c Spatial order of accuracy, Section 6.1.

^d Artificial Viscosity, Section 6.2. "I Derivative" indicates presence of terms proportional to the longitudinal derivative of the magnetic field.

^e MHD method, Section 6.4.

^f Time integration method, Section 6.6.3.

^g Multidimensional technique, Section 6.6.2. "L Reconstruction" indicates presence of transverse derivatives in the interface reconstruction.

Athena (US), CANS+ (Japan), and many other researches

Challenges to multi-D MHD scheme

Comparing numerical methods [Kritsuk+, 2011]

 Table 2

 Solver Design Specifications for the Eulerian Methods^a

Name	Base Scheme ^b	Spatial Order ^c Source Terms ^d		MHD ^e	Time Integration ^f	Directional Splitting ^g	
ENZO FLASH KT-MHD LL-MHD PLUTO PPML RAMSES STAGGER ZEUS	FV, HLL FV, HLLD FD, CWENO FV, HLLD FV, HLLD FV, HLLD FV, HLLD FD, Stagger	Second Second Third Second Third Third Second Sixth	Dedner II Derivative KT None Powell None None Tensor	Dedner Third-order CT Third-order CT Athena CT Powell Athena CT 2D HLLD CT Staggered CT	Second-order RK Forward Euler Fourth-order RK Forward Euler Fourth-order RK Forward Euler Forward Euler Third-order Hyman	Direct ⊥ Reconstruction Direct Split Direct ⊥ Reconstruction ⊥ Reconstruction Direct Split	

Notes.

^a See Section 3 and the indicated sections on each topic for more information.

^b Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.

^c Spatial order of accuracy, Section 6.1.

^d Artificial Viscosity, Section 6.2. "In Derivative" indicates presence of terms proportional to the longitudinal derivative of the magnetic field.

^e MHD method, Section 6.4.

^f Time integration method, Section 6.6.3.

^g Multidimensional technique, Section 6.6.2. "L Reconstruction" indicates presence of transverse derivatives in the interface reconstruction.

Challenges to multi-D

Treatment of numerical magnetic monopole

 ■ Negative effect due to unphysical magnetic force -∇·(B²/2I - BB)=(∇×B)×B+B(∇·B)
 ■ Need divergece-free/divergence-cleaning method!

Challenges to multi-D

Treatment of numerical magnetic monopole

す理論モデルである. MHD では, 流体 (プ ラズマ)の圧力に加え、磁気的な力である ローレンツカによって流体が変形する. --方で磁場は流体の運動に応じて変動する。 ーション技法を3つのアプローチに分け、 磁場と流体の相互作用によって、通常の流 体と類似の音波(速い磁気音波,遅い磁気 音波)のみならず、アルヴェン波と称され る磁力線を伝わる横波が存在可能となる. 特に宇宙空間や天体周辺環境においては、 プラズマはしばしば局所的に波よりも大き い速度を獲得し得るため、これらの波に関 わる多彩な衝撃波構造が普遍的に観測・予 測される

拘束条件东内在 する数値シミュレ 磁気流体力学(M

方程式を具体例に 試みよう. MHD は核融合: ラズマなどのマク

衝撃波などの不連続解を非物理的な振動 なく正しく数値的に解くには、数値解法と して支配方程式の数学的特性を適切に考慮 する必要がある. 双曲型方程式に対する特 性曲線理論に基づく数値解法、いわゆる衝 撃波捕獲法は、長年にわたり数値流体力学 分野における重要な研究開発課題であった. MHD に対しても、衝撃波捕獲法に関する 知見が近年急速に深まりつつあり、基礎研 究、応用研究が活発に進められている、衝 撃波捕獲法では、必要なところにのみ、必 要十分な数値的粘性が自動的に付与される。 この数値的粘性によって不連続解を正確に 解くことができる一方で、特にMHDでは、 衝撃波捕獲法の多次元化において重大な問 題が生じることになる.磁場に関するガウ スの法則, ∇·B=0, の破綻である. 数値

における数値的磁気単極子の影響とその処 方箋を示す、ここでは特に、数値的磁気単 極子の影響を取り除くための数値シミュレ 具体的に紹介する.3つのアプローチとは、 1. 連立方程式を付け加えて解く, 誘導方程式を特別に離散化する。

3. 磁気単極子の時間発展を追う. である、第1のアプローチでは、時間発展 の数値シミュレーションに加え、ガウスの 法則に関する連立1次方程式を解いて磁場 を補正する. 第2のアプローチでは、離散 的なガウスの法則を満足するよう、誘導方 程式に対してのみ特別な離散化を行う、第 3のアプローチでは、数値的磁気単極子の 存在を潔く認め、数値的磁気単極子の時間 発展方程式を考える. それぞれに一長一短 があり、未だ決定版はなく、研究開発途上 の技術と言える

本稿で示す拘束条件を守るための3つの アプローチが、拘束条件を内在する時間発 展方程式の多くに対して、数値シミュレー ションを実現するための有効な指針になれ ば幸いである

た電子流体方程式がオームの 法則となっており (本文中語 (3))、管場互は受動的に決め られる、ただし、電場置をマ クスウェル方程式の誘導方程 元 (本文山元(1)) に代えすれ ば、 Eを方程式系から消すこ とができる. このため, 国 磁| 追体力学でなく 「磁気 流体力学と呼ばれることが多

- 実験技術 🏹 🅀

(シア)アルヴェン波: 磁化されたプラズマ中で、確 力線張力と慣性力が振動を作 り磁力線方向に伝播する構設 この磁気流体波に名前が付い ているハンス・アルヴェンは for fundamental work and dis coveries in magnetohydrodynamics with fruitful applications in different parts of plasma physics" という業績によって 1970年にノーベル物理学賞 を受賞している. 衝撃波:

波の振幅によって伝播速度が 異なるような非線形波動では 時間と共に波の突っ立ちが転 こり、やがて巨視的には物理 量が不連続に変化するように 日才る御歌波が形成し得る 時空間内で特性曲線が交差す るかどうかが重要な因子であ る。複数の波のブランチが有 在するMHDで、しかも多次 元だと、本文中で示される Orizag-Tang渦のように非常 に複雑な現象が起こることに

Challenges to multi-D

Numerical shock instabilities

Odd-even decoupling

Carbuncle phenomena

Challenges to higher-order MHD scheme

Comparing numerical methods [Kritsuk+, 2011]

Name	Base Scheme ^b	Spatial Order ^c	Source Terms ^d	MHD ^e	Time Integration ^f	Directional Splitting ^g
ENZO	FV, HLL	Second	Dedner	Dedner	Second-order RK	Direct
FLASH	FV, HLLD	Second	11 Derivative	Third-order CT	Forward Euler	⊥ Reconstruction
KT-MHD	FD, CWENO	Third	KT	Third-order CT	Fourth-order RK	Direct
LL-MHD	FV, HLLD	Second	None	Athena CT	Forward Euler	Split
PLUTO	FV, HLLD	Third	Powell	Powell	Fourth-order RK	Direct
PPML	FV, HLLD	Third	None	Athena CT	Forward Euler	⊥ Reconstruction
RAMSES	FV, HLLD	Second	None	2D HLLD CT	Forward Euler	⊥ Reconstruction
STAGGER	FD, Stagger	Sixth	Tensor	Staggered CT	Third-order Hyman	Direct
ZEUS	FD, van Leer	Second	von Neumann	MOC-CT	Forward Euler	Split

 Table 2

 Solver Design Specifications for the Eulerian Methods^a

Notes.

^a See Section 3 and the indicated sections on each topic for more information.

^b Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.

^c Spatial order of accuracy, Section 6.1.

^d Artificial Viscosity, Section 6.2. "In Derivative" indicates presence of terms proportional to the longitudinal derivative of the magnetic field.

^e MHD method, Section 6.4.

^f Time integration method, Section 6.6.3.

^g Multidimensional technique, Section 6.6.2. "L Reconstruction" indicates presence of transverse derivatives in the interface reconstruction.

Challenges to higher-order

Importance of higher-order methods

Error of nth-order method vs. Computational cost

Challenges to higher-order

Godunov's theorem

- Any *linear* monotone scheme (non-oscillatory scheme) can be at most first-order accurate
- This statement suggests that higher-order nonoscillatory scheme can be constructed as a nonlinear scheme

□TVD, MUSCL, PPM, WENO, etc.

able oeffic	6 ients d	$\tau_{rk_n,r,m}$ appearing in the	definition of the smoo	othness indicators β_{r,k_i}	+1 (16) for the wavo1	7 (r = 9) reconstructi	on.			
l	m	$k_s = 0$	$k_s = 1$	$k_s = 2$	k _s = 3	$k_s = 4$	k _s = 5	$k_s = 6$	k _s = 7	k _s = 8
8	8	17.848.737.251.203 161,459,296.000	3.165.355.170.121 363,459,296,000	679.328.101.453 163.459.296,000	238.114.846.399 161.459.296.000	238.114.846.399 161.459,296.000	679.328.101.453 161.459,296,000	3.165.355.170.121 163.459,296,000	17.848.737.251.203 163,459,296,000	109.471.139.332.699 161.459.296.000
	7	<u>-189,555,672,759,617</u> 100,590,336,000	-33.593.572.337.951 500,590,336,000	-1.026.441.378.647 14.370.048.000	-2.466.233.185.151 100,590,336,000	<u>-2.297.804.363.777</u> 300.590,336,000	<u>-6.056.041.731.167</u> 100.590.336.000	-3.844.139.848.343 14.370,648,000	-147,809,125,548,479 100,590,336,000	<u>-894.628.364.420.801</u> 100,590,336,000
	6	9,355,064,903,078,053	1,655,072,196,501,883	70,341,062,456,897 261,534,873,600	117,272,649,474,139	20,216,075,320,673 261,534,873,600	247,582,660,569,403	1,063,191,201,446,533	1,152,669,616,433,567	34,709,567,828,765,989
	5	-816,990,037,454,483 52,306,974,720	<u>-3.601,784,423,075,141</u> 1.307,674,368,000	-757,402,017,640,571 1,307,674,368,000	48,633,489,917,473 261,534,873,600	-192,700.060.973,723 1,307,674,368.000	<u>-17694932,119,757</u> 52,306,974,720	<u>1359 899 247 394 491</u> 1307 574 368 000	-10.036.258.935.621.221 1.307.674.368.000	-12.083.632.055.537.503 261.534.873.600
	4	1,123,058,785,015,051 52,306,974,720	984,850,182,064,169 261,534,873,600	203,891,614,104,599 261,534,873,600	2,497,209,723,185 10,461,394,944	45,272,942,000,727 261,534,873,600	19,690,918,384,021 52,306,974,720	409,921,790,776,919 251,534,873,600	2,214,259,153,735,049 261,534,873,600	534,237,095,117,903 10,461,394,944
	3	-24,911,758,529,750,003	-4,331,747,069,079,341 1,307,574,368,000	-877,252,492,928,723	-253,674,820,236,749	-167,888,314,942,259 1,307,674,368,000	-350,067,382,006,253 1,307,674,388,000	-1,457,105,112,643,091 1,307,674,308,000	-7,906,584,673,048,973	-47,841,342,141,961,299
	2	13,952,443,929,995,611 1,307,674,148,000	2,394,338,101,248,133 1,807,674,368,000	470.643.665.358.907 1,107,674,168,000	127,326,292,586,533 1,307,674,368,000	76.858,903,972,891 1,307,674,368,000	155.614950.712.261 1,307,674,368,000	652,452,925,567,483 1,307,674,388,000	3.563.951.929.254.757 1,307,674,368,000	21.644.628.077.515.483 1,307,674,368,000
	1	<u>-4.517.524.574.525.093</u> 1,307,674,368,000	<u>-760.053.376.543.163</u> 1,307,674,368,000	<u>-5,748,413,034,701</u> 52,306,974,720	-36.073.774.922.459 1,307,674,368,000	<u>-3.976300.410337</u> 261,514,873,600	-39.587.674.152.443 1,307,674,368,000	<u>-168,172,381,487,813</u> 1,307,674,368,000	<u>-7.406.462.028.919</u> 10,461,294,944	<u>-5.644.399.400.246.309</u> 1,307,674,361,000
	0	129,739,906,408,601 261,534,873,600	105,994,418,298,211 1,907,674,968,000	19,094,704,104,061 1,307,674,368,000	883,416,230,471 261,534,873,600	2,227,506,474,493	883,416,230,471 201,534,873,900	19,094,704,104,061 1,307,674,168,000	105,994,418,298,211 1,807,674,368,000	129,739,906,408,601 261,534,873,899
7	7	10,637,354,815,456,613 1,307,674,368,000	269,247,491,159,069 186,810,624,000	402,355,798,141,541 1,107,674,368,000	136,155,780,967,307 1,307,674,368,000	119,979,314,906,981 1,107,574,368,000	203,675,114,165,963	1,239,990,283,564,133 1,307,674,368,000	6,603,455,065,054,091 1,307,674,368,000	5.602,753,233,305,651 186,810,624,000
	6	-20,204,125,377,340,061 326,918,592,000	-3,575,411,646,556,907 326,918,592,000	-759,598,480,120,637 326,918,592,000	-251,283,767,228,651 326,918,992,000	-207,359,252,612,669 326,918,582,000	-472,662,830,894,411 326,918,592,000	-1,918,610,096,603,357 326,918,502,000	-10,036,779,580,858,187 326,918,592,000	-59,111,412,950,734,301 326,918,592,000
	5	88.287,149,743.355,417 653,837,184,000	3.116.380.997.521.963 130.767,436,800	3.281,427,995,720,729 653,837,184,000	1.051.238,439,516,119 653,837,184,000	161.084.839.253.509 130.767.436.800	1.720.297.891.825.367 663.837,184,000	1.359.891.017.166.853 1.30,767,436.800	35.272.568.778.872.279 653,837,184,000	207.178.084.258.860.569 653,837,184,000
	4	<u>-24,293,471,434,588,703</u> 130,767,436,800	<u>-4,266,972,749,341,649</u> 130,767,436,800	<u>-886.173,785,909,759</u> 130,767,436,800	-272,139,518,377,073 130,767,436,800	-192,310,345,872,991 130,767,436,800	<u>-388,442,316,668,753</u> 130,767,436,800	-1.512.744.281.500.799 130,767,436.800	-7.832.368.115.834.609 130,767,436,800	46.020384.090357.023 130,767,436,800
	3	107,887,390,486,248,143 653,837,184,000	18,799,624,487,562,689 653,837,184,000	3,825,435,713,279,951 653,837,184,000	1,114,385,138,224,129 653,837,184,000	723,357,784,442,063 653,837,184,000	1,397,141,337,414,593 663,837,184,000	5,414,972,538,444,239 653,837,184,000	28,101,378,954,880,001 653,837,184,000	165,445,178,916,725,479 653,837,184,000
	2	-30,250,052,825,497,529 325,918,592,000	-5,205,585,064,855,199 326,918,592,000	-1,029,608,247,917,273 326,918,592,000	-281,678,601,090,911 326,918,592,000	-167,690,675,241,113 326,918,592,000	-313,421,131,078,079 325,918,592,000	-1,218,782,466,526,649 326,918,592,000	-6.356.537,203,415,423 326,918,592,000	-37,531,036,453,047,161 326,918,592,000
	1	137,189,721,025,309 4,572,288,000	23,159,841,631,123 4,572,288,000	4,411,553,510,173 4,572,288,000	1.123,540,717,459 4,572,288,000	613,753,663,261 4,572,288,000	1,123,540,717,459 4,572,288,000	4,411,553,510,173 4,572,288,000	23,159,841,631,123 4,572,288,000	137,189,721,025,309 4,572,288,000
	0	-5,644,399,400,246,309 1,307,674,368,000	-7,406,462,028,919 10,461,384,344	-168,172,381,487,813 1,307,674,3181,000	-39,587,674,152,443 1,107,674,963,000	-3,976,300,410,337 261,514,873,600	-36,073,774,922,459 1,507,674,388,380	-5,748,413,034,701 52,106,974,720	-760,053,376,543,163	-4,517,524,574,525,093 1,307,674,361(000
6	6	1,994,952,741,927,931	352,812,369,719,413 16,982,784,000	74,730,821,653,819	24,324,934,655,989	19,010,310,966,523	40,385,614,392,181 16,982,784,000	156,622,544,328,763	800,572,672,346,869	4,660,712,172,178,939 16.982,784,000
	5	-23,993,743,892,557,601 46,702,656,000	46,702,656,000	-890,937,252,684,641 46,702,656,000	-282,622,107,973,367 46,702,556,000	-207,059,158,040,897 46,702,656,000	46,702,656,000	-1,544,964,557,143,169 46,702,656,000	-7,795,675,329,471,191 46,702,656,000	45,148,728,224,254,817 46,702,656,000
	4	150,205,347,326,833 212,284,800	26.403.598.814.209 212,284,800	5,489,435,141,989 212,284,800	1679.094.624.733 212.284,800	1.143.576.251.161	2145.005.788.633 212,284.900	7.883.820.528.109 212,284,800	39.564.077.889.589 212,284,800	228.786.920.178.433 212.284.800
	3	<u>-29.387.187.771.747.941</u> 46.702.656.000	<u>-5.129.104.009.946.051</u> 46,702,656,000	-209.388.842.757.121 9,340.531,200	-305,358,847,812,163 46,702,556,000	<u>-38,450,763,316,993</u> 9,340,531,200	<u>-343,655,982,425,891</u> 46,702,656,000	-1.250,454,991,752,101 46,702,656,000	-1.254,519,948,165,511 9,340,531,200	<u>-36294580.012.168.613</u> 46,702,656,000
	2	33,008,527,082,236,991 93,405,312,000	5,694,325,930,465,457 93,405,312,000	1,131,898,542,897,407 93,405,312,000	311,458,280,689,841 93,405,312,000	180,786,151,740,479 93,405,312,000	311,458,280,689,841 93,405,312,000	1,131,898,542,897,407 93,405,312,000	5,694,325,930,465,457 93,405,312,000	33,008,527,082,236,991 93,405,312,000
	1	-37,531,036,453,047,161 326,918,592,000	-6.356.537.203.415.423 326.918.592,000	-1,218,782,466,526,649 326,918,592,000	-313,421,131,078,079 326,918,592,000	-167,690,675,241,113 326,918,592,000	-281,678,601,090,911 326,918,592,000	<u>-1.029.608.247.917.273</u> 326.918,592,000	-5.205.585.064.855.199 326.918,592,000	-30,250,052,825,497,529 326,918,592,000
	0	21,644,628,077,515,483	3.563.951.929.254.757	652,452,925,567,483 1,307,674,368,000	155,614,950,712,261	76.858.903.972.891	127,326,292,586,533	470.643.665.358.907	2,394,338,101,248,133	13952.443.929.995.611

Very-high-order WENO (up to 17th-order) [Gerolymos+, 2009]

Multi-dimensional higher-order divergence-free scheme is one of the goals of shock capturing scheme for MHD

Summary

I have reported current status and challenges of robust shock capturing schemes for MHD

- The HLLD has been established as a standard MHD solver in the field of astrophysics
- Multi-D shock capturing scheme for MHD is one of the challenges

Treatment of numerical magnetic monopoleTreatment of numerical shock instabilities

- Higher-order shock capturing scheme for MHD is one of the challenges
- Study on shock capturing scheme for two-fluid / extended MHD is now progressing...