FE20EINEXTHAR S 70T S5 L \
RBLY R), osc Thes
R Y RESHDRME 1) (FERCCSC

YAMAGUCHI PLASMA SIMULATOR
UNIVERSITY

H. Naitou Yamaguchi University

Acknowlegements:

V.K. Decyk UCLA
M. Yagi, Y. Kagei JAEA
Y. Tauchi Yamaguchi University

S. Mitani, H. Morio Yamaguchi University (Students)

Introduction
Acceleration of PIC code by GPU
Acceleration of PIC code by Intel MIC coprocessor

Conclusions
PICOA—FMBAE)—A~ADTUF LTI R%EHE

Eliminate random access to memory from PIC code.
& THDLRIE ()L or FA)L) TOIRILHE

fine grain parallelism (cell or tile)

= streaming algorithm

.
3 4 ®_ o o*
@ | s ¥ L)
® @
. -« ®
o *° mx = 2
1 2 o® Yo o
®)

cell tile

Parallelization on GpicMHD code on
Plasma Simulator and Helios

H. Naitou et al., J. Plasma and Fusion Res. SERIES 8, 1158 (2009).

H. Naitou et al., Plasma and Fusin Res. 6, 2401084 (2011).

H. Naitou et al, Progress in Nuclear Science and Technology 2, 657 (2011).

Lecture of parallelization of PIC code

“Methods of Fusion Plasma Simulation (in Japanese)
— Utilizing Massively-Parallel Computation —

5. Coding Techniques of Particle Simulations”,

H. Naitou, S. Satake, J. Plasma Fusion Res. 89, 245 (2013).

Proposal of Advanced Algorithm

H. Naitou et al., Plasma Science and Technology 13, 528 (2011).

Mode profiles

upper
figures
t=15
lower
figures
T=225
Magnetic structure electrostatic potential perturbed current density
Growthrate versus collisionless electron skin depth
SR16000: “plasma simulator” at NIFS
scalar SMP cluster system, 128 nodes x 64 logical cores

advanced o ' ! ' ‘

version of p.1d,=v1v,=3 (YT

Gpic-MHD B tm_=plld Ala=18

0.15 - J
A N, =64
A
}, Theory N, = 257
o 256 - 512
processes
N, = 513
0.05 1 16 threads:
N, =1025 Gpic-MHD SMP=16
N, =218 A GRm 1000000 -
% 0.005 0.01 0.015 0.02 4000000
particles/process
d /a

e
. Large Scale

* Massive-Parallel Computer

Thread Parallel — ------ OpenMP
shared memory autoparallelization
Process Parallel ------ MPI (domain/particle decomposition)

didtributed memory
* Accelerators
GPU (Graphics Processing Unit)
—————— GPGPU (General-Purpose computing on GPUs)

SIMD (Single Instruction Multiple Data)
single-precision (32-bit) +
double-precision (64-bit)(slow)

intel MIC coprocessor
double-precision

* PIC code
Particles move freely in the system.
~ields are calculated only at grid points.

Particles interact with nearest grids.
* Gyrokinetic-PIC code

Based on gyrokinetic theory.

Keep the basic algorithm of PIC code.

* Conventional GPU was developed for
computer graphics

 GPGPU (General-Purpose GPU)
specialized for high-performance computing
several thousands of cores
SIMD instructions
NVIDIA, AMD y

Bus: PCl Express
(Peripheral Component
Interconnected Express)

GPU
(Device)

device program

kernel program

many integrated
stream processors

global memory

memory

CUDA (Compute Unified Device Architecture)
GPGPU language for NVIDIA GPUs
Tesla, Quadro, GeForce
C/C++ FORTRAN
APP (AMD Accelerated Parallel Processing)
AMD (Advanced Micro Devices)
OpenCL (Open Computing Language)
open framework for environments across heterogeneous platforms
CPU, GPU, DSP (Digital Signal Processors) etc.
Khronos Group (non-profit technology consortium)
C/C++
OpenACC (will merge into OpenMP)
programing standard for CPU/GPU systems
C/C++ FORTRAN

e 2D electrostatic PIC code.

* Single floating-point precision.
* Follow only electron dynamics.

* Linear interpolations for charge assignment
and particle acceleration.

* No external magnetic field.

One thread treats one particle.
PUSH: Particle pushing O
SOURCE: Charge Assignment X
FFTO - CUDAFFT

It is very easy to modify the PIC code to CPU-GPU
system.

One thread treats one cell and particles inside the cell.
PUSH: Particle pushing O
SOURCE: Charge Assignment O
FFT O - CUDAFFT

Additional computation is needed:

SORT: after every pushing, particles must

move to proper cells.

Ref.1 V. K. Decyk, T. V. Singh,
“Adaptable Particle-in-Cell algorithms for graphical processing units”,
Computer Physics Communications 182 (2011) 641-648.

Ref.2 V. K. Decyk, T. V. Singh
“Particle-in-Cell algorithms for emerging computer architectures”
Computer Physics Communications 185 (2014) 708-719.

Original PIC code for CPU
FORTRAN

Cell-Parallel oriented PIC code for CPU FORTRAN
OpenMP Multi-Core

Cell-Parallel PIC code for CPU-GPU CUDA FORTRAN

Modify each subroutine to DEVICE PROGRAM
one by one.

parcount = 10

PUSH: particle acceleration

Local Ex: efx(4), efy(4)

Global Ex: efx_global(meshx, meshy) ﬁ
efy _global(meshx, meshy)

STRUCT

parcount:

number of particles in a cell
meshpxy(4,200):

keep particle data(x, y, vx, vy)
efx(4):

electric field in x
efy(4):

electric field iny
rho(4):

keep assigned charge

SOURCE: charge assignment

Local rho: rho(4)

Global rho: rho_global(meshx,meshy)

After particle pushing,
each particle will move
to 8 adjacent cells or stay
In the original cell.

> X

15t step: store particle data for 8 different orientations
2" step: move particles to the new mesh

SOURCE1: calculate charge density for each cell from particle data
SOURCE2: calculate charge density for the the total mesh

FIELD1: calculate electric field for the total mesh
from charge density for the total mesh

FIELD2: calculate electric field for each cell
—

PUSH: accelerate particles by using
electric field for each cell

SORT1: save particles moving out of the cell
SORT2: redistribute particles to new cells

Caution: join SORT1 to PUSH for eliminating multiple data access

Kepler architecture

Time [sec]

160
140 [
120 [

100 [

SOURCE
FUSH
SORT
FIELD

80 [
60 [
40 [

20 [

PIC

SOURCE

PUSH

SORT
FIELD

cell-p PIC

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

Time [sec]

160
140 [
120 [

100 [

SOURCE
PUSH
SORT
FIELD

80 [
60 [
40 |

20 [

CPU
SOURCE

PUSH

1 2 4
number of threads

8

SORT

GPU

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

Speedup Factor

20

| SOURCE

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

e Intel Ref:Wikipedia

 MIC (Many Integrated Core) architecture
* coprocessor

Xeon Phi 5110P
November 12, 2012
22nm 60 cores 1.053GHz
double precision 1.011 TFLOPS

TOP500 November 2013 world fastest supercomputer
Tianhe-2 Intel Ivy Bridge Xeon + Xeon Phi 33.86 PetaFLOPS

* Host CPU
Xeon processor E5 2450 x 2
8 cores, 24 GB
* Coprocessor
Xeon Phi 5110P x 2
60 cores, 8 GB

Offload execution mode CPU -> MIC
Coprocessor native execution mode MIC (ssh)
Symmetric execution mode CPU+MIC (mpi)

.
3 4 ®_ o o*
@ | s ¥ L)
® @
. -« ®
o *° mx = 2
1 2 o® Yo o
®)

cell tile

OpenMP version of
Tile-Parallel oriented PIC code for CPU

$

MIC version of

FORTRAN

- thread parallel for multi-core

Tile-Parallel oriented PIC code for CPU
(native mode)

* same as OpenMP version
= No change is needed!

wall clock time[sec]

250 L
200 | OURCE S
SORT
FIELD
150 L
100 |
50
SORIT
0
FIELD 1 2 4 8

number of threads

mx =4
my =4

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

. —&—SOURCE mx =4
T | = sort SOURCE TOTAL | my = 4
e TN T AL
6 i
—
9o
8 5| i
L 256 X 256 mesh
% 4r <1 100 particles / mesh
8 1000 steps
0 = 1 At=0.1
Q .
)
2 L i
1 i
0 | | | |
0 2 4 6 8 10

number of threads

wall clock time [sec]

1400
1200
1000
800
600
400

200
SORT

0
FIELD

SOURCE
PUSH

SOURCE E

number of threads

mx =4
my =4

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

speedup factor

140

120

100

80

60

40

20

—a— SOURCE
—e— PUSH
—r— SORT
= TOTAL PUSH

SOURCE

100 150 200

number of threads

250

mx =4
my =4

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

wall clock time [sec]

SOURCE
PUSH
SORT

40

35

30

25

20

15

10

Host CPU Processor

SOURCE

Intel MIC Coprocessor

PUSH

SORT
8 240

number of threads

mx =4
my =4

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

SORT mx = j
3+ . my =
- PUSH Y
_9 TOTAL
8 25 L PARTICLE 1 256 X 256 mesh
LL 100 particles / mesh
% 2 SOURCE 1000 steps
3 At=0.1
D
)
O
7p

(5} 15
O
e,
®
=
-—

1
v 0
O
9O
)
®

5
=

Cell-Parallel

| SOURCE

PUSH

Tile-Parallel
mx=4, my=4

256 X 256 mesh

100 particles / mesh
1000 steps

At=0.1

Performance of GPU
Cell-parallel PIC code for CPU-GPU system is tested for GTX TITAN.
* Speed-up factor for SOURCE and PUSH is excellent.

GPU is powerful for these type of algorithms.

* The total speedup factor obtained is 5.8.
* SORT is dominant for cell-parallel algorithm.
e Cell-Parallel vs. Tile-Parallel ?

Performance of Intel MIC Coprocessor

* Cell and tile-parlallel PIC code is parallelized for multi-cores by OpenMP.

* Above code is tested for intel MIC coprocessor Xeon Phi 5110P without any
modification.

* Native mode (stand alone mode) is used.

* Asthe number of threads increases, excellent scaling is obtained.
* Speedup factor for total particle time is 2.3.

e Cell-parallel code is comparable to tile-parallel code.

