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Outline

• Momentum Conservation in Gyrokinetic Theory

— conservation lay and transport equation from field theory

• Plasma Flow and Electric Field

— toroidal momentum is a conserved/transported quantity (like pressure)

— radial electric field derived as a function of conserved/transported quantities

— fluid flow picture ↔ gyrokinetic drifts picture

• Time Scale Separation and Relaxation

— Alfvén, then geodesic, then ion collision, then transport

— transport and a quasistatic equilibrium

— simple computational model

— result in a global gyrofluid computation



Textbook: Tokamak Magnetic Field and MHD Equilibrium

• axisymmetric div-free vector field for the magnetic field

B = I∇ϕ+∇ψ×∇ϕ

• basic flux function is ψ(R,Z)

• requirement of MHD equilibrium

J×B · ∇ϕ = 0 =⇒ I = I(ψ)



Textbook: Tokamak Divergence-free Flows

• axisymmetric div-free vector field for the flow field

u =WR2∇ϕ+ UB B · ∇U = 0 =⇒ U = U(ψ)

• toroidal and parallel components

uϕ ≡ u · ∇ϕ =W + U
I

R2
u‖ =W

I

B
+ UB

• requirement of MHD equilibrium with div-free flow

∂

∂t

I

R2
+∇ ·

I

R2
u = B · ∇uϕ =⇒ W =W (ψ)



Textbook: Perpendicular Force Balance

• negligible flow inertia (incl viscosity), allow resistive friction

E = −
u

c
×B+

1

nZe
∇p+

E‖

B
B

• assume E = −∇φ, put in the form for u and dot with ∇ψ to find

1

c
WR2∇ϕ×B · ∇ψ = ∇ψ ·

(

∇φ+
1

nZe
∇p

)

• assume φ, n, and p are flux functions, pull out |∇ψ|
2
, find

1

c
W =

∂φ

∂ψ
+

1

nZe

∂p

∂ψ

• this is actually for each ion, so φ is set by charge conservation . . .



Neoclassical Theory: Poloidal Flow

• the other degree of freedom is poloidal flow

• use orthogonality, ∇ϕ · ∇θ = 0 for any reasonable definition of θ

• hence poloidal flow is given solely by U

u · ∇θ = UB · ∇θ U =
u · ∇θ

B · ∇θ

• this U is actually the output of several neoclassical codes
(eg, NEOART, A G Peeters Phys Plasmas 7:268 2000)

• again, this is actually for each ion, so φ is set by charge conservation . . .
◦ the quantity U is set by neoclassical theory (dissipation)
◦ then, the quantity W is set by the toroidal momentum (conservation)



Conserved Toroidal Momentum

• find the covariant toroidal component of the flow

uϕ = R2W + UI

• with mass density, this is the toroidal angular momentum

Mϕ =
∑

sp

nm(R2W + UI)

• note that “covariant toroidal component” carries the factor of R



Finally, Neoclassical Radial Electric Field

• the inputs are n and p for each species, and Mϕ

• then, neoclassical theory gives the quantity U

• then, to fix W therefore dφ/dψ . . .

• define a radial coordinate ρ = ρ(ψ) as you wish, and Er = −dφ/dρ

• solve for W and then plug in its formula, use flux surface average
〈

R2
〉

, find

Er = −
1

ρM 〈R2〉

[

1

c

∂ψ

∂ρ

(

Mϕ − I
∑

sp

nmU

)

−
〈

R2
〉

∑

sp

m

Ze

∂p

∂ρ

]

• conventional neoclassical ordering: Mϕ is small
(static force balance: U is small or zero)

• this allows setting the neoclassical Er with finite-Mach Mϕ

• caveat: assumes the determining of U by collisions under finite-Mach Mϕ is known



The Gyrokinetic Representation

• based around perp force balance (similar to “reduced fluid”), so we define

∇⊥ ≡ −
1

B2
B× (B×∇) ∇2

⊥ ≡ ∇ · (∇⊥)

• the salient small parameter is the ratio ExB vorticity to ion gyrofrequency

ΩE ≡
c

B
∇2

⊥φ ΩE/Ω ∼ δ ≪ 1

• long-wavelength: φ enters the Lagrangian (density L) solely through

φ or u ≡
1

2
|∇⊥φ|

2 v ≡ ∇2
⊥φ

• then we define

C ≡ −
∂L

∂φ
N ≡

∂L

∂u
P ≡ −

∂L

∂v



Charge Conservation

• variation of φ gives functional derivative δL/δφ

• result is the polarisation equation

C +∇ · (N∇⊥φ) +∇2
⊥P = 0

• note that C is charge density of gyrocenters, not particles

• the quantity N gives the polarisability, its whole term is polarisation density

• the quantity P gives the finite gyroradius (FLR) contribution

• charge conservation is the time derivative of this equation
◦ define polarisation ∇ ·P = C hence P = − (N∇⊥φ+∇⊥P )

• charge conservation is actually ∇ · J = 0 with the polarisation and drift pieces

∇ ·
∂P

∂t
−
∂C

∂t
= 0 more on this later, with examples



Momentum Conservation

B Scott, Phys Plasmas 17 (2010) 112302

• intimately connected to charge conservation

• conserved toroidal angular momentum includes polarisation and drift pieces

Mϕ ≡ −
1

c
〈P · ∇ψ〉+ I

∑

sp

∫

dW

〈

fpz
B

〉

• toroidal angular momentum conservation is the time derivative of this equation



Toroidal Angular Momentum and Radial Electric Field

• plug in for polarisation using N and P

Mϕ =
1

c
〈(N∇⊥φ+∇⊥P ) · ∇ψ〉+ I

∑

sp

∫

dW

〈

fpz
B

〉

• solve for the radial electric field piece

−
1

c
〈N∇⊥φ · ∇ψ〉 =

1

c
〈∇⊥P · ∇ψ〉 −

(

Mϕ − I
∑

sp

∫

dW

〈

fpz
B

〉

)

• iterative approach for general N and P (nonlinear in φ)
◦ set N and P in terms of zero-Mach limit
◦ solve for dφ/dψ using

〈

N |∇ψ|2
〉

◦ correct N and P in terms of finite-Mach iterative
◦ repeat until converged



Fluid Limit

• as the FLR contributions go to lowest order . . .

N →
ρMc

2

B2
P →

pmc2

ZeB2

• however, we have to link the parallel flow back to the poloidal flow, so use

I
∑

sp

∫

dW

〈

fpz
B

〉

=
∑

sp

nmu‖
I

B

and on the fluid side use

u‖
I

B
=W

I2

B2
+ UI Mϕ =

∑

sp

nm(R2W + UI)

hence
∑

sp

nmu‖
I

B
=

I2

R2B2

(

Mϕ +
∑

sp

nmU
|∇ψ|2

I

)



• the geometry pieces combine such that

Mϕ − I
∑

sp

∫

dW

〈

fpz
B

〉

≈

〈

|∇ψ|
2

R2B2

〉(

Mϕ −
∑

sp

nmUI

)

hence the radial electric field equation is

−
1

c
〈N∇⊥φ · ∇ψ〉 =

1

c
〈∇⊥P · ∇ψ〉 −

〈

|∇ψ|
2

R2B2

〉(

Mϕ −
∑

sp

nmUI

)

which becomes in the fluid limit

−ρM
〈

R2
〉 ∂φ

∂ψ
=
〈

R2
〉

∑

sp

m

Ze

∂p

∂ψ
−

1

c

(

Mϕ −
∑

sp

nmUI

)

• and this corresponds to what we had before

Er = −
1

ρM 〈R2〉

[

1

c

∂ψ

∂ρ

(

Mϕ − I
∑

sp

nmU

)

−
〈

R2
〉

∑

sp

m

Ze

∂p

∂ρ

]



Bottom Line

• gyrokinetic field theory gives a description of the conserved momentum

• the electric field is given in terms of conserved quantities
and the neoclassical poloidal rotation

• in the fluid limit the gyrokinetic description recovers the fluid expression

• as ever:

the caveat is the ability of the collisional model
to give the neoclassical poloidal rotation (U)

• if a gyrokinetic model can do this it can capture neoclassical flow
◦ strict neoclassical ordering of small Mϕ is not needed in either case
◦ neoclassical ordering of linear φ and ∇φ is not needed in the gyrokinetic case



example: where do higher order terms go?

• our finite-Mach gyrokinetic Lagrangian (Miyato et al, JPSJ 78:104501 2009)

L = · · · −
∑

sp

∫

dΛ f

(

eφ+ e
ρ2L + ρ2E

4
∇2

⊥φ− nm
u2E
2

)

where

uE =
c

B2
B×∇φ ρ2E =

u2E
Ω2

ρ2L =
2µB

Ω2

• find polarisation quantities

C =
∑

sp

ne N =
∑

sp

nmc2

B2

(

1−
ΩE

2Ω

)

P =
∑

sp

mc2

2eB2

(

p⊥ + nm
u2E
2

)

where the moment variables are given by

n =

∫

dW f nmu‖ =

∫

dW pz f p⊥ =

∫

dW µB f



• now find polarisation contribution to momentum

−
1

c
P · ∇ψ =

1

c
|∇ψ|

2

(

N
∂φ

∂ψ
+
∂P

∂ψ

)

−
1

c
P · ∇ψ =

1

c
|∇ψ|

2

(

ρMc
2

B2

∂φ

∂ψ
+
∂P

∂ψ
−
ρMc

2

B2

ΩE

2Ω

∂φ

∂ψ

)

• put into the iteration scheme for the radial electric field

−
1

c

〈

N0 |∇ψ|
2
〉 ∂φ

∂ψ
=

1

c

〈

|∇ψ|
2

(

N1
∂φ

∂ψ
+
∂P

∂ψ

)〉

−

〈

|∇ψ|2

R2B2

〉(

Mϕ −
∑

sp

nmUI

)

where for these purposes we regard the coefficient nmU as a flux function
and denote N0 and N1 as

N0 =
ρMc

2

B2
N1 = −N0

ΩE

2Ω

• higher order terms are in N1 and P and are small by δ for equilibrium flows



Relaxation to Equilibrium from Arbitrary Initial State

• time scale separation

ωA =
vA
qR

≫ ωS =
cs
qR

≫ ωC = (νi)NC ≫ ωT = τ−1
E

• various pieces relaxing on these scales:
◦ current and vorticity sidebands on ωA

◦ flow, density/pressure, ion thermal sidebands on ωS

◦ bootstrap current, neoclassical poloidal ion flow on ωC

◦ transport of conserved quantities on ωT

• definition of a sideband (Alfvén pieces, ̟ is ion vorticity)

〈

J‖ cos θ
〉

〈̟ sin θ〉 driven by
∂

∂ρ
〈p〉



relaxation in a fluid model

• we can’t do this with a 4-field model because we need ion temperature Ti
◦ hence for consistency keep also Te and heat fluxes qe‖ and qi‖

• first use of these equations (e.g., always use a dynamical heat flux)
PPCF 40 (1998) 823 and Contrib Plasma Phys 38 (1998) 171

• equations shown in normalised fluxtube form, see Phys Plasmas 12 (2005) 102307

• for correspondence fluid to gyrofluid, see Phys Plasmas 14 (2007) 102318

• for correspondence gyrofluid to gyrokinetic, see Phys Plasmas 17 (2010) 102306

• coupling parameters: ωB = 2δL⊥/R and bs = L⊥/qR with δ = ρs/L⊥

• for a global model use L⊥ → a and keep 1/ρ effects



• neglecting nonlinearities, FLR/anisotropy effects, basic model without dissipation is

∂̟

∂t
= B∇‖

J‖

B
−K (pe + pi) ̟ = ∇2

⊥ (φ+ pi)

∂

∂t

(

βeA‖ + µeJ‖
)

= −∇‖ (φ− pe) J‖ = −∇2
⊥A‖

∂n

∂t
= B∇‖

J‖ − u‖
B

−K (pe − φ)

µi

∂u‖
∂t

= −∇‖ (pe + pi)

3

2

∂Te
∂t

= B∇‖

J‖ − u‖ − qe‖
B

−K

(

pe − φ+
5

2
Te

)

µe

∂qe‖

∂t
= −

5

2
∇‖Te

3

2

∂Ti
∂t

= B∇‖

J‖ − u‖ − qi‖
B

−K

(

pe − φ−
5

2
τiTi

)

µi

∂qi‖
∂t

= −
5

2
τi∇‖Ti



free energy theorem

• conserved free energy density

E =
1

2

[

|δ∇⊥ (φ+ pi)|
2 + (1 + τi)n

2 +
3

2
T 2
e +

3

2
τiT

2
i

+ βe
∣

∣δ∇⊥A‖

∣

∣

2
+ µeJ

2
‖ + µiu

2
‖ +

2

5
µeqe

2
‖ +

2

5
µiqi

2
‖

]

• spatially averaged integral

∂

∂t

∫

dV E = 0 dV =
1

π
ρ dρ dθ

• proof: multiply equations respectively by

− (φ+ pi) J‖ (1 + τi)n u‖ Te
2

5
qe‖ τiTi

2

5
qi‖

add them, and integrate over domain



Braginskii dissipation model

• parallel dissipation only, thermal forces in electrons only

• resistivity and thermal force in Ohm’s law and electron heat flux
◦ thermal conduction only in ion heat flux (see PPCF 39 (1997) 1635)

E‖ = · · ·+ µeνe

[

0.51J‖ +
0.71

3.2

(

qe‖ + 0.71J‖
)

]

µe

∂qe‖
∂t

= · · · − µeνe
5/2

3.2

(

qe‖ + 0.71J‖
)

µi

∂qi‖

∂t
= · · · − µiνi

5/2

3.9
qi‖

• electron and ion energetics

2

5
µeqe‖

∂qe‖
∂t

− E‖J‖ = · · · − µeνe

[

0.51
(

J‖
)2

+
1

3.2

(

qe‖ + 0.71J‖
)2
]

2

5
µiqi‖

∂qi‖

∂t
= · · · − µiνi

1

3.9

(

qi‖
)2

• note: positive-definite damping, the basis for all subsequent dissipation models



Landau closure model

• expect: no dissipation of equilibrium, thermodynamically consistent damping

• solution: dissipation acts on total heat flux divergence,
under conditions of energetic consistency

• total heat flux divergence (parallel, diamagnetic), each species

D ≡ B∇‖

q‖

B
−K

(

5

2
τT

)

• involves both T and q‖, must be in both their equations (use V L =
√

τ/µ qR)

3

2

∂T

∂t
= · · · − K (µV LD) µ

∂q‖
∂t

= · · ·+∇‖µV LD

• signed charge ratios: µ = m/ZMD and τ = T/ZTe , energetics with a = nZ/ne
◦ obtain positive-definite damping =⇒ thermodynamically correct
◦ no damping after D → 0

a

(

3

2
τT

∂T

∂t
+

2

5
µq
∂q

∂t

)

= · · · −
2

5
aµV LD2



neoclassical viscosity model

• start: thermal force effect in parallel flow equation

• hence: corresponding thermal flux terms in ion parallel heat-flux equation

• final: additional diagonal term in the latter =⇒ neoclassical transport

• in parallel flow and ion heat flux equations

µi

∂u‖
∂t

= · · ·+ B∇‖
νNC

B
∇‖

(

u‖ + αNCqi‖
)

µi

∂qi‖
∂t

= · · ·+B∇‖
5

2

νNC

B
∇‖

[

χNCqi‖ + αNC

(

u‖ + αNCqi‖
)]

• energetics (ions have a = 1 and µ = 1):

µi

(

u‖
∂u‖
∂t

+
2

5
qi‖

∂qi‖
∂t

)

= · · · − νNC

(

u‖ + αNCqi‖
)2

− νNCχNC

(

qi‖
)2

• first term does flow equilibrium, no dissipation in dissipative equilibrium

• only the χNC term does actual neoclassical transport



basic sideband assumption of quasistatically evolving equilibrium

B Scott, New J Phys 7 (2005) 92

• flux surface average in vorticity and current sideband equations

∂

∂t
〈̟ sin θ〉 = −bs

〈

J‖ cos θ
〉

−
ωB

2

∂

∂x
〈pe + pi〉

∂

∂t

〈(

βeA‖ + µeJ‖
)

cos θ
〉

= −bs 〈(φ− pe) sin θ〉 − η
〈

J‖ cos θ
〉

• time scale of these is ωA, so for ω ≪ ωA the ∂/∂t term is small/neglected
◦ resulting balances can be combined in derivations, eg,

ωB

∂

∂x
〈(φ− pe) sin θ〉 =

η

2

ωB
2

bs2
∂2

∂x2
〈pe + pi〉

• however, if the right hand sides are out of balance, then the reaction occurs at ω ∼ ωA

• hence the time derivative should not be a priori ordered in a multi-scale process
◦ except for ω ≪ (k⊥vA,Ω) as required by the gyrokinetic description



force balance in quasistatically evolving equilibrium

• do the same for the zonal vorticity equation (B∇‖ is annihilated)

∂

∂t
〈̟〉 = −ωB

∂

∂x
〈(pe + pi) sin θ〉

• follow the coupling chain, assume ωA scales are in balance (keep τi factors)
◦ here neglect collisional effects since ωS ≪ ωC

3

2

∂

∂t
〈(pe + pi) sin θ〉 =

5

2
(1 + τi) Ds +Di

µi

∂

∂t

〈

u‖ cos θ
〉

= −bs 〈(pe + pi) sin θ〉

µi

∂

∂t

〈

qi‖ cos θ
〉

= −
5

2
τib

s 〈Ti sin θ〉 − aLi (Di)

where the sideband flow and ion heat flux gyrocenter divergences are given by

Ds = bs
〈

u‖ cos θ
〉

+
ωB

2

∂

∂x
〈φ+ pi〉

Di = bs
〈

qi‖ cos θ
〉

+
ωB

2

∂

∂x

〈

5

2
τiTi

〉



character of the almost collisionless equilibrium

• system does not evolve if there is no pressure/thermal or divergence sideband

• condition of balance is therefore that these vanish
◦ when divergences balance the divergence-dissipation closure ceases effect as well

• putting these in, the zonal variables do not evolve on ω ≪ ωC (neglect also η)

∂

∂t
〈̟〉 = −ωB

∂

∂x
〈(pe + pi) sin θ〉 = 0

∂

∂t
〈n〉 = ωB

∂

∂x
〈(φ− pe) sin θ〉 = 0

3

2

∂

∂t
〈Te〉 = ωB

∂

∂x

〈(

φ− pe −
5

2
Te

)

sin θ

〉

= 0

3

2

∂

∂t
〈Ti〉 = ωB

∂

∂x

〈(

φ− pe +
5

2
τiTi

)

sin θ

〉

= 0



collisional viscosity in quasistatically evolving equilibrium

• now, for ω ∼ ωC we put the collisions back in
◦ but in doing this assume Alfvén and geodesic/acoustic balances

• the main statement is that the divergences remain close to zero

• recall the flow equation

µi

∂u‖
∂t

= −∇‖ (pe + pi) +B∇‖
νNC

B
∇‖

(

u‖ + αNCqi‖
)

• the flow sideband equation in electron/ion balance becomes

〈(pe + pi) sin θ〉 = −νNCb
s
〈(

u‖ + αNCqi‖
)

cos θ
〉

• with divergence balance this goes into the vorticity equation as

∂

∂t
〈̟〉 = −νNC

ωB
2

2

∂2

∂x2

〈

φ+ pi +
5

2
αNCTi

〉



evolution of the quasistatic equilibrium on transport time scales

• the main point is that for ω ∼ ωC we have

∂

∂t
〈̟〉 = −νNC

ωB
2

2

∂2

∂x2

〈

φ+ pi +
5

2
αNCTi

〉

• hence for ω ∼ ωT ≪ ωC we have (regularity at the axis)

∂

∂x

〈

φ+ pi +
5

2
αNCTi

〉

= 0

• this is nothing more/less than the statement of the neoclassical electric field
◦ it is pinned on collisional time scales
◦ behind that, the geodesic/acoustic clamp holds ion force/divergence balance
◦ behind that, the Alfvén/electron clamp holds electron force/divergence balance

• hence for ω ∼ ωT the ∂/∂t is small everywhere
except for (zonal components of) conserved quantities



2-D Axisymmetric Computational Model

• 2-D global model: 129 points 0 < ρ < 1 and ±8 Fourier modes (θ ↔ l)
◦ use l’Hopital’s rule at the magnetic axis for 1/ρ terms

• keep radial profiles and higher sidebands (l > 1)
◦ continuum damping is how the Alfvén part relaxes
◦ cleaner sideband cascade prevents l = 1 pile-up

• Karniadakis time step allows long-time integration

• no ordering on partial time derivative

• set parameters and q-profile for mid-size tokamak core

a/ρs = 200 q = 1.5 + 2.5ρ2 R/a = 3.3 βe = 2× 10−3

• species parameters:

µe = 2.72× 10−4 µi = 1 τi = 1

• constants and correct collisional damping rates: αNC = −0.6 χNC = 1.5

νea/cs = 10−1 νi/νe =
√

µe/2 νNC = 10−2 Vi/qR



initial evolution on Alfvén time scale

• initial state, zonal profiles, all other quantities zero

̟ = 0 n = 0.7(1 + cosπρ) Te = Ti = 2.0(1 + cosπρ)

• evolution shown to 20 a/cs

• Alfvén responses follow vA/qR which has shear

• outward propagation for strong shear
◦ ever-narrowing layers



evolution on geodesic scale

• evolution shown to 200 a/cs

• still some finite Alfvén ringing especially at edge

• geodesic response most apparent in ion heat channel and zonal φ

• radial electric field goes into collisionless force balance

• MHD equilbirium almost formed



evolution on neoclassical collisional scale

• evolution shown to 2000 a/cs

• Alfvén and geodesic ringing is gone

• MHD equilbirium well formed

• flow equilbirium is also very solid

• hence force balance very strict (see energetics)

• radial electric field and flow pattern slowly relaxes (see energetics and profiles)



evolution on neoclassical transport scale

• evolution shown to 20000 a/cs

• MHD and flow equilbiria very strict (see energetics)

• all relaxation due to collisions with other parts in equilibrium

• case with χNC = 0 shows no transport
◦ demonstrates the difference between equilibrium clamping and transport



long-term evolution

• evolution shown to 200000 a/cs

• transport stops when ion temperature gradient is gone

• equilibrium force balance with just density and electron temperature gradients
◦ these slowly relax due to electron collisionality (much weaker)

• there are no issues about how long this can be run

• to be able to say that . . .
◦ you need exact energetic consistency in the collisionless part of the model
◦ you also need thermodynamically correct dissipation



Fig. 1. Time traces of free energy components (due to ExB and diamagnetic ion flow ’E’, density ’n’,

electron temperature ’e’, magnetic field and parallel electron flow ’B’, and parallel ion flow ’u’), showing

the initial Alfvén response for t < 5 and in Eu the initial acoustic response. The Alfvén oscillations do

not die out so fast, however, as shown in the next few figures. The ion temperature free energy Ei, not

shown, is very close to Ee.



Fig. 2. Time traces of 10−1× the axis value of φ (AP ), 10× the zonal component of the ion

ExB/diamagnetic flow energy (ZE), and the l = 1 sideband components of ion ExB/diamagnetic flow

(SE) and magnetic field/parallel electron flow (SB) energies. Comparison to Fig. 1 shows that SE and

SB nearly cover the total values EE and EB , also shown by the small level of ZE . Of these signals, only

AP reflects the underlying acoustic oscillation which is otherwise swamped by the Alfvén responses.



Fig. 3. Profiles (functions of ρ independent of θ) of the state at t = 10a/cs showing zonal components

of the density n, both temperatures Te,i, the electrostatic potential φ and the vorticity ̟, the sin θ
sidebands of φ and ̟, and the cos θ sideband of the parallel current J‖. The Alfvén oscillation layers

are seen in the three sidebands; animation of this figure from t = 0 to 20 in steps of 0.1 show growth,

decay, and slow damping of the sizes as the layers move outward and narrow in width. Oscillation layers

can also be seen in n, φ and ̟ and to a lesser extent discerned in Te,i. The zonal φ is in the vicinity

of but not exactly at the statis force-balance level, since at the same time the acoustic oscillations are in

progress.



Fig. 4. Profiles (functions of ρ independent of θ) at t = 10a/cs of the sin θ component of the

total gyrocenter divergences (that is, minus the polarisation component) in the current J, ion flow U,

and electron and ion heat fluxes Qe,i, together with their corresponding parallel divergences ∇‖ on J‖,
u‖, qe‖, and qi‖, respectively (note ∇‖J‖ is actually B∇‖(J‖/B), etc, but in this model B = B0).

In each case a total divergence consists of a geodesic curvature part acting on the zonal component of a

state variable (plus the much smaller l = 2 sideband) and a parallel part acting on the cos θ sideband

of the coresponding flux variable, with the associated pairs being those given in Eqs. (70-73). The top

row gives the total and the bottom row the parallel part. The ratio top/bottom row gives the closeness

of equilibration. For t = 10 the perturbations due to the propagating Alfvén oscillation layers are very

strong.



Fig. 5. Snapshot of the state at t = 10a/cs showing the electrostatic potential φ and the parallel

current J‖. In each case red/blue are positive/negative and ∆ gives the interval in normalised units.

The system has not yet relaxed into force-balance equilibrium, as the narrow radial layers in the sideband

quantities are the dominant component of both variables. Animation of this figure from t = 0 to 20 in

steps of 0.1 shows that for about t > 5 the amplitude of the layers is only weakly oscillatory while the

layers drift spatially outward towards the boundary.



Fig. 6. Time traces of free energy components (due to ExB and diamagnetic ion flow ’E’, density ’n’,

electron temperature ’e’, magnetic field and parallel electron flow ’B’, and parallel ion flow ’u’). Comparison

to Fig. 1 shows that the ion flow channels EE and Eu have dropped away while the magnetic/electron

parallel flow energy EB finds balance against the thermal free energy channels (Ei, not shown, is very

close to Ee). This reflects the energy in the Pfirsch-Schlüter current and its associated magnetic field

perturbation (the Shafranov shift).



Fig. 7. Time traces of 10−1× the axis value of φ (AP ), 10× the zonal component of the ion

ExB/diamagnetic flow energy (ZE), and the l = 1 sideband components of ion ExB/diamagnetic flow

(SE) and magnetic field/parallel electron flow (SB) energies. Comparison to Fig. 6 shows that almost

all of EE and EB are in their respective sidebands SE and SB with ZE much smaller. The geodesic

oscillations are visible in AP and these are mostly damped for t > 100. Comparison to Fig. 2 shows the

drop in the ion flow energy while the amplitude AP and the magnetic field/parallel electron flow energy

find equilibration at finite levels.



Fig. 8. Profiles (functions of ρ independent of θ) of the state at t = 200a/cs showing zonal

components of the density n, both temperatures Te,i, the electrostatic potential φ and the vorticity ̟,

the sin θ sidebands of φ and ̟, and the cos θ sideband of the parallel current J‖. Comparison to Fig.

3, against which the change in scale for the sideband quantities is to be noted, shows that the Alfvén

oscillation layers in the three sidebands have mostly damped away except for some persistence at the outer

boundary (driven by the ̟ and J‖ sidebands, with φ the response felt further inward), and except for

this the system is close to force-balance equilibration.



Fig. 9. Profiles (functions of ρ independent of θ) at t = 200a/cs of the sin θ component of the

total gyrocenter divergences (that is, minus the polarisation component) in the current J, ion flow U,

and electron and ion heat fluxes Qe,i, together with their corresponding parallel divergences ∇‖ on J‖,
u‖, qe‖, and qi‖, respectively (note ∇‖J‖ is actually B∇‖(J‖/B), etc, but in this model B = B0).

In each case a total divergence consists of a geodesic curvature part acting on the zonal component of a

state variable (plus the much smaller l = 2 sideband) and a parallel part acting on the cos θ sideband

of the coresponding flux variable, with the associated pairs being those given in Eqs. (70-73). The top

row gives the total and the bottom row the parallel part. The ratio top/bottom row gives the closeness

of equilibration. For t = 200 the Alfvén oscillations reflect nearly complete relaxation while the other

components remain out of balance. Animation of this figure in the range 100 < t < 1000 show outwardly

propagating geodesic oscillations in the top row ∇ ·U, mostly reflecting variations in the φ profile, from

2× 10−3
down to below 10−5

in amplitude.



Fig. 10. Snapshot of the state at t = 200a/cs showing the electrostatic potential φ and the parallel

current J‖. In each case red/blue are positive/negative and ∆ gives the interval in normalised units. The

basic force-balance equilibrium is reflected in the zonal component of φ (the part independent of θ) and

the cos θ sideband component of J‖ giving the Pfirsch-Schlüter current, in contrast to the structure in

Fig. 5. The small Alfvén oscillation layers in J‖ and up/down shift in φ can still be seen, indicating that

the force-balance equilibration is nearly but not totally complete.



Fig. 11. Time traces of free energy components (due to ExB and diamagnetic ion flow ’E’, density ’n’,

electron and ion temperature ’e,i’, magnetic field and parallel electron flow ’B’, and parallel ion flow ’u’).

The electron and MHD energetics En,e,B is nearly static. The ion thermal energy drops slightly, reflecting

the slow neoclassical ion transport due to χνNC . The perpendicular ion flow energy EE is visible only

for the initial equilibration phase but the parallel ion flow energy Eu rises slowly as the neoclassical flow

relaxation begins to act.



Fig. 12. Time trace of the axis value of φ (AP ) and the parallel ion flow energy (Eu). The acoustic

oscillations from the initial equilbration phase become invisible after about t > 500. The slow rise of

AP shows relaxation away from the static force-balance level towards a value reflecting a finite overall

perpendicular rotation. The evolution of Eu reflects the quasi-static ion flow divergence balance under

collisional relaxation. The time scale of this is set by the neoclassical parallel ion viscosity coefficient νNC ,

and the level is set by the neoclassical thermal force coefficient α.



Fig. 13. Profiles (functions of ρ independent of θ) of the state at t = 2000a/cs showing zonal

components of the density n, both temperatures Te,i, the electrostatic potential φ and the vorticity ̟,

the sin θ sidebands of φ and ̟, and the cos θ sideband of the parallel current J‖. Comparison to Fig.

8 shows that the Alfvén oscillation layers in the three sidebands damped away to small levels and the

system is evolving quasi-statically under force-balance equilibration while the ion flow relaxes due to the

neoclassical parallel ion viscosity. The small drop in Ti compared to Te reflects the slow neoclassical ion

transport due to χνNC .



Fig. 14. Profiles (functions of ρ independent of θ) at t = 2000a/cs of the sin θ component of the

total gyrocenter divergences (that is, minus the polarisation component) in the current J, ion flow U,

and electron and ion heat fluxes Qe,i, together with their corresponding parallel divergences ∇‖ on J‖,
u‖, qe‖, and qi‖, respectively (note ∇‖J‖ is actually B∇‖(J‖/B), etc, but in this model B = B0).

In each case a total divergence consists of a geodesic curvature part acting on the zonal component of a

state variable (plus the much smaller l = 2 sideband) and a parallel part acting on the cos θ sideband

of the coresponding flux variable, with the associated pairs being those given in Eqs. (70-73). The top

row gives the total and the bottom row the parallel part. The ratio top/bottom row gives the closeness of

equilibration. For t = 2000 all channels are in close balance, reflecting a well-relaxed equilibrated state.

From here on, the system is a quasi-statically evolving equilbrium following collisional dissipation (profiles

of φ, from neoclassical viscosity, and Ti, from neoclassical thermal transport).



Fig. 15. Snapshot of the state at t = 2000a/cs showing the electrostatic potential φ and the parallel

current J‖. In each case red/blue are positive/negative and ∆ gives the interval in normalised units. The

small Alfvén oscillation signals visible in Fig. 10 are now absent. The edge layer in the Pfirsch-Schlüter

current results from the inner transition boundary of the sink region at the outer edge. The potential

structure is dominantly zonal, with the relaxing profile reflected in the changed interval and level (mostly

positive at this time).



Fig. 16. Profiles (functions of ρ independent of θ) of the state at t = 2 × 104a/cs showing zonal

components of the density n, both temperatures Te,i, the electrostatic potential φ and the vorticity ̟,

the sin θ sidebands of φ and ̟, and the cos θ sideband of the parallel current J‖. Comparison to Fig.

13 shows the same force-balance equilibration evolving quasi-statically under the neoclassical parallel ion

viscosity and thermal conductivity. The decay of Ti and corresponding change to the profile of φ are

visible.



Fig. 17. Profiles (functions of ρ independent of θ) of the state at t = 2 × 105a/cs showing zonal

components of the density n, both temperatures Te,i, the electrostatic potential φ and the vorticity ̟,

the sin θ sidebands of φ and ̟, and the cos θ sideband of the parallel current J‖. Comparison to Figs.

13,16 shows the same force-balance equilibration evolving quasi-statically under the neoclassical parallel

ion viscosity and thermal conductivity. The decay of Ti and corresponding change to the profile of φ are

now nearly complete.



Fig. 18. Time trace of the axis value of φ (AP ) and the parallel ion flow energy (Eu), with the

logarithmic time axis showing the various phases. The acoustic oscillations from the initial equilbration

phase become invisible after about t > 500. The slow rise shows relaxation away from the static force-

balance level towards a value reflecting a finite overall perpendicular rotation. The slow decay follows the

neoclassical transport in the ion thermal conductivity channel. The evolution of Eu reflects the quasi-

static ion flow divergence balance under collisional relaxation. As Ti decays the axis value of φ becomes

negative again, eventually to balance τi∂n/∂ρ, and Eu drops to zero.



Fig. 19. Time traces of free energy components (due to perpendicular ion flow ’E’, magnetic field/parallel

electron flow ’B’, thermal due to density ’n’ and electron/ion temperature ’e,i’, parallel ion flow ’u’, and

parallel electron/ion heat flux ’q,Q’), with the logarithmic time axis showing the various phases. At

late times the heat fluxes follow the temperatures, the ion flow rises towards equilbration with the ion

temperature gradient and afterward decays with it, and the drop in EB following that in Ei is also

visible. The dip in En during the Alfvén response phase reflects the involvement of the density profile

in the energetics, but after t = 10 the electron density and temperature are negligibly damped over the

entire run.



Fig. 20. Time traces of energetic dissipation components (due to electron and ion Landau damping

’l’ and ’L’, Braginskii resistivity and electron and ion thermal conduction ’c’ and ’k’ and ’K’, neoclassical

dissipation ’s’, and numerical dissipation due to hyper-diffusion ’v’ and the edge layer sink ’f’), with the

logarithmic time axis showing the various phases. The green dashed and solid lines are Gk and GK

respectively (with Gk the higher before about t = 50), and the higher of the blue lines is the ion one

GL. Most of the Alfvén continuum damping (peaking near t = 20) is in GL, followed by Gl and

then by Gv . Oscillations die away continually after about t = 30 and equilibration is increasingly solid



after t = 100, after which ion neoclassical thermal conduction is the dominant sink, with Braginskii ion

thermal conduction a factor of about 6 behind. Over 1800 < t < 2000 the total energetic decay rate is

9.38× 106 with an energetic error of 1.11× 10−8
. Even Gc is 6.75× 108, or about 6 times larger

than the error.



Fig. 21. Profiles (functions of ρ independent of θ) of the main ∇pi term in the ion continuity

equation against which ∇phi and B∇‖(u‖/B) balance (upper left), the main FLR correction arising

from ρ2L∇
2
⊥φ in the Hamiltonian H hence pi∇v (upper right), and the higher-order drifts corrections

due tomu2E and ρ2E∇
2
⊥φ inH hence∇u2E and∇ρ2Ev (lower left and right, respectively) at t = 2000.

The higher-order drifts corrections are much smaller than even the main FLR correction, with most of the

signal near the edge sink layer hence even smaller in the core region. This indicates a negligible effect of

the higher-order drifts on the result.



Fig. 22. Profiles (functions of ρ independent of θ) of the main ExB ∇⊥φ term in the drifts contribution

to the total angular momentum (upper left), the main FLR correction arising from ∇⊥pi, this time at

unit order giving the diamagnetic flow term (upper right), and the higher-order drifts corrections due to

ω2
E/Ω times ∇⊥φ and ∇⊥u

2
E (lower left and right, respectively) at t = 2000. The higher-order drifts

corrections are much smaller than even the main FLR correction, with most of the signal near the edge

sink layer hence even smaller in the core region. This indicates a negligible effect of the higher-order drifts

on the result.



Bottom Line

• this shows a way to put neoclassical flow relaxation into a fluid model
◦ by extension into a gyrofluid model

• the purpose is to demonstrate successive action of the processes at various time scales

• parameters satisfy ωA ≫ ωS ≫ ωC ≫ ωT without ordering the equations

• electron heat fluxes and current (MHD equilibrium) relax on ωA

• then, flow and ion heat flux relax to force/divergence balance on ωS

◦ at this stage the “residual” flow depends on inital conditions

• then, the radial electric field relaxes on ωC via collisions
◦ this is equivalent to the collisional relaxation of the poloidal flow

(and other neoclassical moments not included)
◦ the flow evolves in quasistatic divergence balance

• finally, the zonal components of conserved quantities evolve via transport on ωT

◦ sources and sinks are only relevant on this time scale
◦ all other quantities evolve quasistatically in neoclassical balance

• a gyrokinetic code can do this iff
the collision operator and velocity-space resolution are good enough


