

Benchmark of local and non-local neoclassical transport calculations in helical configurations

S. Satake¹, J.L. Velasco², A. Dinklage³, M. Yokoyama¹, Y. Suzuki¹, C.D. Beidler³, H. Maaßberg³, J. Geiger³, A. Wakasa⁴, S. Murakami⁵, N. Pablant⁶, D. López-Bruna², LHD Exp. Group¹, TJ-II Team² and W7-AS Team³

> ¹National Institute for Fusion Science, Toki, Japan ² Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain ³ Max-Planck-Institut für Plasmaphysik, Greifswald, Germany ⁴ Research Organization for Information Science and Technology (RIST), Japan ⁵ Department of Nuclear Engineering, Kyoto University, Kyoto, Japan ⁶Princeton Plasma Physics Laboratory, Princeton, NJ, USA

2015年1月13日~14日 @第20回NEXT研究会. 京都

This work was supported by JSPS Grant-in-Aid for Young Scientists (B), No. 23760810, and NIFS collaborative Research Programs NIFS13KNST051. Part of calculations was carried out using the HELIOS supercomputer at IFERC-CSC, under the ITER-BA collaboration implemented by Fusion for Energy and JAEA. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Background of the work

- Evaluation of neoclassical transport in stellarator / heliotron devices is important compared to that in tokamaks because of
 - Relatively large amplitude
 - Strong dependence on radial electric field, especially at low-collisionality
 - Radial electric field estimated from ambipolar condition of NC flux
- Complexity in solving drift-kinetic equation in helical configurations → mono-energy and local approximation are commonly used (DKES, GSRAKE, etc.)
 - Reduction of the dimension of DKE to be solved from 5 to 3
 - In some W7AS and LHD ion-root discharges, fairly good agreement has been reported in the particle and energy flux b/w local NC calculations and transport analyses (from deposition profiles) at r/a<0.6. (Dinklage *et al.*, IAEA 2012, Nuclear Fusion 2013)

Purpose of the work

- We further intend to improve the prediction of neoclassical contribution to the total radial fluxes and the E_r profile from ambipolar condition.
- In this work, it is investigated how much does the non-local, 5D drift-kinetic simulation (FORTEC-3D code) improve the evaluation of NC transport in the discharges in LHD, W7-AS, and TJ-II, which were precisely studied with local neoclassical transport codes.
- We would like to see in what condition local model is valid, and where the non-local effect becomes important for transport analysis.

Differences in local and non-local NC transport simulations

Drift-kinetic equation for $\delta f(r, \theta, \zeta, v, \xi) = f - f_M$:

$$\frac{\partial \delta f}{\partial t} + \left[\left(\mathbf{v}_{\parallel} + \mathbf{v}_{E \times B} + \mathbf{v}_{B} \right) \cdot \nabla + \dot{v} \frac{\partial}{\partial v} + \dot{\xi} \frac{\partial}{\partial \xi} \right] \delta f = -\left(\mathbf{v}_{B} \cdot \frac{\partial}{\partial r} + \dot{v} \frac{\partial}{\partial v} \right) f_{M}(r, v) + C(\delta f)$$

Here, $C(\delta f)$ is the collision term, $\xi = v_{\parallel}/v$, and

 $\boldsymbol{v}_B = \left(\frac{\mu}{e}\right) \frac{\boldsymbol{B} \times \nabla B}{B^2} + \left(\frac{m v^2 \xi^2}{eB}\right) \boldsymbol{b} \times \boldsymbol{b} \cdot \nabla \boldsymbol{b}$ represents the magnetic drift velocity.

- Local and mono-energy methods [Reduced to 3-D (θ, ζ, ξ)]
 - Simplified collision operator : Adopt pitch-angle scattering operator
 - Small-magnetic-drift & mono-energy approximations :

Neglect the $[v_B \cdot \nabla + \dot{v}(\partial/\partial v)]\delta f$ term $(\dot{v} = ev_B \cdot E_r/mv)$

- **DKES:** Solves the DKE by using the variational principle.
- GSRAKE: Ripple-averaged DKE (both passing and trapped particles). Simplification in the magnetic field spectrum.
- Non-local, full-5D method
 - **FORTEC-3D:** Solve **the full 5-D DKE** as it is, using the δf -PIC method.
 - Exact guiding-center trajectory including the $[v_B \cdot \nabla + \dot{v}(\partial/\partial v)]\delta f$ term (what we call "non-local effect" here).
 - Pitch-angle & energy scattering collisions with conservation property.

- Ambipolar condition is determined by scanning the E_r profile which satisfies $\Gamma_i(r, E_r) = \Gamma_e(r, E_r)$.
- > Difference in the E_{amb} b/w local and non-local codes is small in the core region but becomes larger towards the plasma boundary.
- > On the contrary, difference in Γ_{amb} is small in the entire region.
- > Most significant difference appears in Q_i .

Finite magnetic drift causes the difference in ambipolar- E_r

- A) $|E_r| \sim 0 \rightarrow \text{Assumption } V_{E \times B} \gg V_B$ is not good. $V_B \cdot \nabla \theta$ term $\left(\propto \frac{\partial B}{\partial r} \right)$ causes poloidal precession of ripple-trapped particles and prevents $1/\nu$ type large NC flux even without $E \times B$ rotation.
- B) $|E_r| \gg 0 \rightarrow \text{Assumption } V_{E \times B} \gg V_B$ is valid. $V_B \cdot \nabla r \text{ term } \left(\propto \frac{\partial B}{\partial \theta} \right)$ becomes more effective near the boundary, since magnetic ripple is larger there.

Also, at $\rho > 0.9$, poloidal Mach number is $\cong 1$. \rightarrow Incompressible- $E \times B$ approximation used in DKES is not valid.

Finite magnetic drift can cause large difference in Q_i

- Even if E_{amb} changes, difference in Γ_{amb} is small.
- → because of weak dependence of Γ_e on E_r .

➢ Not only because of difference in E_{amb} but also the difference in the dependence on E_r causes the large difference in Q_i.

(Comparison with GSRAKE) Simulation result : (2) LHD Energy flux Ambipolar particle flux Ambipolar E, 50 2.5 GSRAKE ion FORTEC-3D elc GSRAKE elc GSRAKE F3D i + F3D e . ion 0 FORTEC-3D elc 40 -2 Γ_{AMB} [x10¹⁹/m²s] -4 a_i, a_e [kW/m²] 30 1.5 E_r [kV/m] -8 20 -10 10 0.5 elc. -12 GSRAKE -14 F3Di+F3De 0 0 0.2 0.4 0.6 0.8 0.2 0 0 0.4 0.6 0.8 1 0 0.4 0.6 0.8 0.2 r/a r/a r/a Eamb. (global) 10 Qi amb. (global) 70 GSR i GSR e F3D i F3D e GSR i GSR e Local & mono-energy 8 ă 60 F3D i F3D e ¥ 50 solutions of Γ_i and Q_i tend to 6 $\Gamma_{\rm i}, \Gamma_{\rm e}\, [{\rm x10}^{19}/{\rm m}^2{\rm s}]$, Q_e [kW/m²] (@r=0.79a) 40 be peaky at $E_r \rightarrow 0$ since it 30 neglects $v_{B,r}$ drift which is σ 20 important at there. 0 10 -2 \Rightarrow Results in difference in E_{amb} Eamb. (local) 0 -4 -7 Qi amb. (local) -10 -6 -5 -4 -3 -2 -1 . -7 -6 -5 -4 E,[kV/m] E_r[kV/m]

- Since Γ_e and Q_e depend on E_r weakly and zero-orbit-width approximation is valid for electrons, **ambipolar-** Γ and Q_e differs only slightly b/w two calculation methods.
- Difference in amb-Q_i between local and global calculations are much more significant than that in Q_e.
 Same tendency as in the W7-AS case

Simulation result : (3) TJ-II

(Comparison with DKES)

As the plasma is **most collisional among the 3 cases**, non-local effect is least expected to appear in this case.

> Ambipolar- E_r coincides well b/w local and non-local simulations.

 \succ However, difference b/w two solution is more significant in Q_e than in Q_i .

✓ Finite $V_B \cdot \nabla \theta$ term, which is not negligible compared to $V_{E \times B} \cdot \nabla \theta$ term for electrons at the ion-root E_r , seems to significantly affect the evaluation of Q_e in the TJ-II configuration.

- > Measured E_r profile (HIBP or CXRS) < NC ambipolar condition, but reasonable agreement is found in LHD and W7-AS cases.
- ➤ For TJ-II case, non-local NC simulation cannot resolve the discrepancy.
- Some unconsidered mechanism of ion particle loss other than the bulk ion NC flux is required to explain the difference.
 - ✓ Loss of fast ions from NBI heating? Impurity ion transport?

Comparisons with experimental analysis (2) Radial energy flux

Energy fluxes were analyzed by **TASK3D** or **ASTRA** codes from the heat deposition profile.

- In the LHD case, good agreement of Q_i between local NC flux from GSRAKE and experiment analysis within factor 2 (in the core region) has been reported.
- > Non-local NC calculation also changes the estimation of $Q_i(NC)$ at ion-root by factor 2 from the local one.
- In the W7-AS case, it is found that previous DKES solution (lower accuracy in the MHD equilibrium and low resolution in solving DKES) differs much from the new DKES and FORTEC-3D solutions, though it agrees better with ASTRA in the core region.
- Contribution of anomalous transport to the energy flux is almost one order larger than that from neoclassical transport, according to the improved calculations.

Improvement of the evaluation of neoclassical Q_i is really important for the quantitative accuracy of transport analysis, especially if the neoclassical energy transport is dominant.

Summary

- FORTEC-3D non-local neoclassical transport code was applied to LHD, W7-AS and TJ-II to see the difference in the ambipolar NC flux and E_r from those evaluated by the local, mono-energy approximation codes.
- In ion-root plasmas, the ambipolar E_r profile in these configurations estimated from local & mono-energy codes is similar to that is obtained by non-local simulation.
- Though E_{amb} profiles are similar between local and non-local NC simulations, the magnetic drift term, which is neglected in local NC codes, is found to alter the Q_i at the ion-root as large as by factor 2.
- We plan to extend this analysis to more collisionless cases, in which non-local NC calculation is expected to be more important.

backup slides

Procedure to find the ambipolar condition by FORTEC-3D

- FORTEC-3D can solve DKE and the time evolution E_r for only a single particle species at once. In previous studies, only ion neoclassical transport was solved by FORTEC-3D, while table of $\Gamma_e(r, E_r)$ was prepared from another local code.
- > To determine the ambipolar condition from both Γ_i and Γ_e by FORTEC-3D code, the following three steps are used.

density, temperature profiles

Comparisons with experimental analysis Radial particle / energy flux in TJ-II

The TJ-II case analyzed here has $10 \times \text{difference b/w } Q_i(\text{NC})$ and $Q_i(\text{Exp.})$.

However, we also found a case where $Q_i(Exp.) = 2 \sim 3 \times Q_i(NC, local) \cong Q_i(NC, non-local)$

Comparisons with experimental analysis Radial particle / energy flux in W7-AS

Particle and energy fluxes in the W7-AS discharges was analyzed by ASTRA code considering the particle and heat deposition profiles.

