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Abstract

We employ FORTEC-3D to investigate the dependence of neoclassical
poloidal viscosity(NPV) on magnetic configuration of LHD, and the effect
of resonant magnetic perturbation (RMP) on NPV.
For the m/n = 1/1 island formation in LHD, the threshold of RMP
amplitude depends on the magnetic axis position in LHD. On the other
hand, neoclassical transport theory predicts that the NPV also correlates
to the magnetic axis position.

By δf simulation, we investigate NPV variation in LHD plasmas with
plasma profiles and ambipolar electric field Er .
Thus, we study m/n=1/1 RMP effect on NPV.
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RMP pentrates plasma as its amplitude exceeds the

threshold.

Figure 1: Rax-RMP amplitude

m/n = 1/1 RMP in LHD
1 RMP penetrate plasma as

perturbation amplitude exceeds
threshold.

2 The threshold correlates to magnetic

axis position.
3 The Neoclassical Poloidal viscosity

(NPV) also depends on magnetic

axis position.

With LHD experiment data
(temperature, density, Rax), we
investigate the basic dependence of
NPV in LHD.
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Simulate NPV with FORTEC-3D

We employ drift-kinetic equation for distribution function
δf (x, v) ≡ f (x, v) − fm(x, v)

∂δf

∂t
+ (v‖ + vD) · ∇δf + v̇

∂f

∂v
− CT (δf ) = −(vD · ∇+ v̇

∂

∂v
)fm + Pfm.

(1)

Taking the moment of (1)

〈
∂

∂t
mnu · eθ〉 = −〈eθ · ∇ · P〉+ e〈nu · ∇Φ〉 (2)

NPV is difined as

〈eθ · ∇ · P〉 ≡ 〈
∂δP

B

∂B

∂θ
〉. (3)

FORTEC-3D simulates drift kinetic Eq. and evaluate the δP

δP = δP⊥ + δP‖

δP⊥ =

∫
d3v

m

2
v⊥

2δf , δP‖ =

∫
d3v mv‖

2δf
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Simulation Result

We scan the magnetic axis from 3.55[m] to 3.80[m] for ramped-up/down
RMP experiments respectively as we show in the fig.(1). In the fig.(2) We
investigate NPV amplitude and Er radial profiles without RMP.
We simulate the ambipolar radial electric field Er on flux surface by using
Γi (from FORTEC-3D) and Γe (from GSRAKE[4]).
For the investigation of NPV without RMP effect, we collect the data
when RMP was shielded.
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Simulation Results
Scan the magnet axis from 3.55[m] to 3.8[m] by FORTEC-3D
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fig(2a) Radial profile of NPV in ramp-up cases fig.(2b) Radial profile of Er in ramp-up cases
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fig(2c) Radial profile of NPV in ramp-down cases fig.(2d) Radial profile of Er in ramp-down cases

Figure 2: Radial Profile of NPV and Er .B. Huang et. al. (SOKENDAI) 7 / 17



Simulation Results
NPV density depends on Er ( @ ι ≃ 1 surface)
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Figure 3: ν∗-NPV.
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Figure 4: Dependence of NPV on Er
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Simulation Results
NPV depends on Rax but Collisionality
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Figure 5: Dependence of NPV on Rax

We expected that NPV ∝
1

nu∗
,but in

fig.(3), the collisionality is not the major
factor dominating the amplitude of NPV.

As neoclassical theory expected, the
fig.(4) shows that the NPV amplitude is
proportional to 1/|Er |.

In the fig.(5), NPV increases as Rax

increases but it is still determined by
plasma profile, too. For example, density
and ion temperature may be the potential
factor. For shot#116727, NPV amplitude
decreases due to large Er amplitude. For
shot#11888, NPV is increased but Er

amplitude is small.

B. Huang et. al. (SOKENDAI) 9 / 17



Simulation Results with RMP
NPV density on R-axis
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Figure 6: Radial profile of NPV with RMP in a
case Rax = 3.55
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Figure 7: Radial profile of NPV with RMP in a
case Rax = 3.60
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Simulation Results with RMP
NPV density on R-axis
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Figure 8: Radial profile of NPV with RMP in a
case Rax = 3.70

In figs.(6), (7) and (8), we
investigate the NPV with
different m/n= 1/1 RMP
amplitude using a simple model
δB ∝ (r/a)2.

The RMP effect is obvious near
m/n= 1/1 surface.

We found that below 1% δB/B0

amplitude, NPV in LHD is
almost unaffected by the RMP
field.
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Simulation Results
Depandence of NPV (each (m,n) mode)
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Figure 9: Depandence of NPV at B(1, 0), B(1, 1) and B(2, 10) mode
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Simulation Results
Depandence of NPV (each (m,n) mode)
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Figure 10: Bm,n amplitudes in Rax = 3.70,
Rax = 3.65 and Rax = 3.55.

In fig.10, B1,0 and B2,10 are
main components.The tow
components are changed a little
due to the shift in Rax. By
contrast, B1,10 and B3,10 are
minor but changed a lot due to
the shift in Rax.

In fig.11, NPV1,0 and NPV2,10

sum is small to contribute to
total NVP too much. In Fig.12,
NPV1,10 and NPV3,10 sum is
main contribution for NPV.
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Simulation Results
Depandence of NPV (each (m,n) mode)
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Figure 11: NPV contribution of B(1,0) and
B(2,10) without RMP in Rax = 3.70,
Rax = 3.65 and Rax = 3.55.
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Figure 12: NPV contribution of B(1,10) and
B(3,10) without RMP in Rax = 3.70,
Rax = 3.65 and Rax = 3.55.
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Depandence of NPV (each (m,n) mode)

We construct the NPV by

〈eθ · ∇ · P〉 =
∑

m,n 6=0

〈eθ · ∇ · P〉
m,n ≡ B0

∑
m,n 6=0

nδm,nQm,n. (4)

1 As expected, the RMP, mode B(1, 1), affects surface ι ≃ 1 and the
effect is proportional to RMP amplitude.

2 In the other surface (r/a=0.69 and 0.79) , it is small and negligible to
the RMP effect on mode B(1, 1). The strong RMP influences the
(1, 0)- and (2, 10)- modes and changes their amplitudes. This
suggests that the strong RMP δBm,n couple with the pressure
perturbation of the different modes, Qm′,n′ .

3 Practically δB/B0 ∼ 10−4 in LHD but we employ δB/B0 ∼ 10−2 in
our test. It is anticipated that the RMP field does not change NPV
amplitude in the practical LHD experiment.
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Conclusion and Future work

Conclusion

NPV amplitude becomes larger as Rax moves outward. Following the
results, we are able to see the influence near the resonant surface
(ι ≃ 1) if the RMP amplitude δB/B0 > 0.01. Practically RMP
amplitude is δB/B0 ∼ 10−4 in LHD. We found that m/n = 1/1 RMP
less than 1% cannot affects NPV.
The strong RMP influences the mode B(1, 0) and B(2, 10) and
changes their amplitudes.

Future work

Study the relation between the NPV torque with the threshold RMP
amplitude from the LHD experiments.
Compare the Er profile obtained from the ambipolar condition with the
measured.
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