20th NEXT Workshop

Fokker-Planck Simulation of the Runaway Electron Generation in Tokamak Disruption

H. Nuga¹ A. Matsuyama¹ M. Yagi¹ A. Fukuyama²

¹Japan Atomic Energy Agency

²Kyoto University

Outline

1 intro

- Introduction
- Simulation Code: TASK/FP
- 2 Equations
 - Physics Models
 - Benchmark
- 3 Simulation Results
 - Parameters
 - Evaluation of hot-tail effect

Introduction (RE generation)

- The importance of the Runaway Electron (RE) generation study during tokamak disruption:
 - Thermal quench due to tokamak disruption induces strong totoidal electric field.
 - Because of the low collisionality for high velocity, some of electrons are accelerated to relativistic high energy.
 - The impact to the first wall leads crucial localized heat load.
 - To avoid this, several mitigation methods are developed.
- The estimation of the amount of REs during tokamak disruption is required for the development of the operation scenarios.

Introduction (hot-tail effect)

Non-thermal effect should be include for RE gen. simulation

- If the thermal quench is enough short, the plasma cools down so quickly that high velocity electrons do not have enough time to thermalize.
- The rapid cooling forms the high velocity tail of the electron velocity distribution.
- This tail enhances the primary RE generation and this effect is called as hot-tail effect.
- Since the mitigation, such as Massive Gas Injection (MGI), makes the thermal quench time to be short, the estimation of the hot-tail effect is important for ITER.
- In order to include the hot-tail effect to RE generation simulation, we have developed a Fokker-Planck code TASK/FP.

Simulation Code: TASK/FP

intro

TASK/FP is a Fokker-Planck code to calculate the time evolution of momentum distribution function f in 3 dimension : (p, θ, ρ) .

Fokker-Planck equation in (p, θ, ρ) coordinate

$$\frac{\partial f_s}{\partial t} = -\nabla_{p,\rho} \cdot \mathbf{S} = -\frac{1}{p^2} \frac{\partial}{\partial p} p^2 S_p - \frac{1}{p \sin \theta} \frac{\partial}{\partial \theta} \sin \theta S_\theta - \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho S_\rho$$

Elements of flux

$$S_{p} = -D_{pp}\frac{\partial f}{\partial p} - D_{p\theta}\frac{1}{p}\frac{\partial f}{\partial \theta} + F_{\rho}f$$
$$S_{\theta} = -D_{\theta p}\frac{\partial f}{\partial p} - D_{\theta \theta}\frac{1}{p}\frac{\partial f}{\partial \theta} + F_{\theta}f, \qquad S_{\rho} = -D_{\rho}\frac{\partial f}{\partial \rho} + F_{\rho}f$$

Equations 1: *E* field

The induced electric field obeys:

1. Diffusion equation of E field

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E}{\partial r}\right) = \mu_0 \frac{\partial}{\partial t}j$$

Ohm's low is adopted as a closure.

2. Ohm's low (n_r : REs density, σ_{sp} : Spitzer conductivity)

$$j = \sigma_{sp}E + ecn_r$$

This equation assumes

- The velocity of all REs equals to that of light.
- All of REs are collisionless.

Equations 2: RE gen. rate

- There are two kind of RE generation mechanisms, primary and secondary.
 - The primary RE generation is defined as the electrons go out from the computational domain as:

3. Primary RE generation rate

$$\frac{dn_{rp}}{dt} = \int \nabla \cdot \boldsymbol{S} d\boldsymbol{p}, \quad (p_{max}^2/m \sim 1 \text{MeV})$$

Secondary RE generation rate is expressed as a function of RE density n_r and E/E_C:

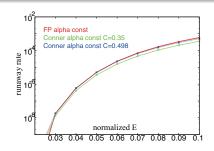
4. Secondary RE generation rate

$$\frac{dn_{rs}}{dt} = S_{avalanche}(n_r, E/E_C)$$

$$\blacksquare E_C = E_D (v_{th}/c)^2$$

NEXT, Jan./2015

Benchmark


Benchmark: primary RE gen. rate

In order to confirm the influence of the hot-tail effect, we implement the other primary RE generation rate derived by Conner and Hastie (1975) which do not consider the hot-tail effect.

3-2. Primary RE generation rate without hot-tail effet

$$\frac{dn_{rp}}{dt} = S_{dreicer}(E/E_D, T)$$

Under the condition of the steady electric field and constant background temperature, the values of these primary RE gen. rate have good agreement.

H. Nuga (JAEA)

Parameters (JT-60U like)

Initial profiles (impurity species: C)

$$R = 3.4\text{m}, \ \kappa = 1.6, \ a = \sqrt{\kappa} \times 1\text{m}$$

$$n_e(\rho) = (0.4 - 0.04)(1 - \rho^2)^{2/3} + 0.04 \quad [\times 10^{20}]$$

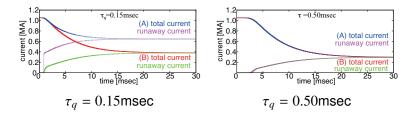
$$T(\rho) = (2.0 - 0.2)(1 - \rho^2)^2 + 0.2 \quad [keV]$$

$$j(\rho) = j_0(1 - \rho^{1.74})^{3.23}$$

$$n_D(\rho) = (0.24 - 0.024)(1 - \rho^2)^{2/3} + 0.024 \quad [\times 10^{20}]$$

$$Z_{eff} = 3, \ I_{init} = 1.052\text{MA}$$

Thermal quench model

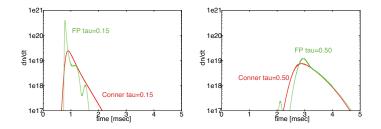

$$\begin{array}{lll} T(t,\rho) &=& (T(0,\rho)-T_f(\rho))*\exp\left(-t/\tau_q\right)+T_f(\rho) \\ T_f(\rho) &=& T_f(0)(1-0.9\rho^2) \end{array}$$

• τ_q : thermal quench time, $T_f(0) = 10$ eV: post-quench temperature

1) Evolutions of current

Time evolution of the net plasma current and RE current

■ (A): with hot-tail, (B): without hot-tail

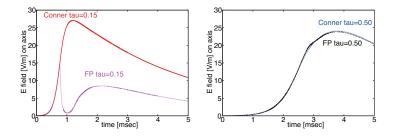

The RE current increase due to the hot-tail effect.

The differences between A and B becomes larger as the thermal quench time becomes shorter.

2) Evolutions of dn/dt

Time evolution of dn_{rp}/dt

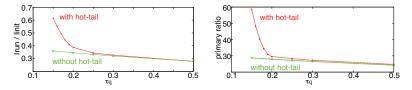
Focus on 0 < t < 5 msec: primary REs are generated mainly



- For faster thermal quench case ($\tau_q = 0.15$ msec), the hot-tail effect enhances the peak value of dn_{rp}/dt and the duration of RE gen. decreases.
- For slower thermal quench case, the hot-tail effect is not remarkable.

3) Evolutions of *E*

Time evolutions of E_{\parallel} on axis

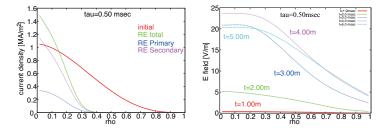

(L): $\tau_q = 0.15$ msec, (R): $\tau_q = 0.50$ msec

- The strong peak of dn_{rp}/dt reduces E_{\parallel} for $\tau_q = 0.15$ msec
- For the slow quench case, the hot-tail effect is also not remarkable to E_{\parallel} .

4) hot-tail formation

- (L): relation between I_{run}/I_{init} and τ_q
- (R): primary RE current ratio (I_{prim}/I_{run}) v.s. τ_q

The hot-tail effect is notable for $\tau_q < 0.25$ msec


If the thermal quench time is longer than the e-e slowing down time of almost all electrons, it is presumed that the tail of *f* is not formed.

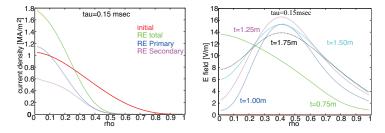
$$\tau_{ee}^s(v) = 2\pi\epsilon_0^2 m^2 v^3 / n_e q^4 \ln \Lambda$$

- $\tau_{ee}^{s}(3v_{th0}) \sim 0.26$ msec in this case.
- Since the most of electrons have the velocity $0 < v < 3v_{th0}$, the hot-tail effect is not effective for $\tau_q > 0.25$ msec.

4) radial profiles-1

- (L): current density prifile ($\tau_q = 0.50$ msec)
- (R): electric field profile ($\tau_q = 0.50$ msec)

RE current density profile is peaked on axis.

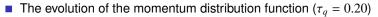

$$n_{rp}/n_r = 0.247 \text{ (FP)}$$

■ $n_{rp}/n_r = 0.242$ (Conner)

E has flat profiles during disruption on axis.

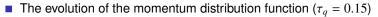
5) radial profiles-2

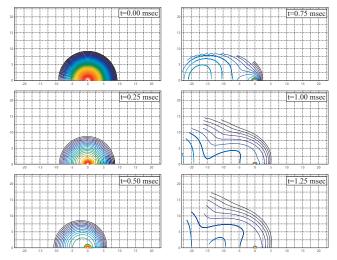
- (L): current density prifile ($\tau_q = 0.15$ msec)
- (R): electric field profile ($\tau_q = 0.15$ msec)


Faster thermal quench enhances the primary ratio

$$n_{rp}/n_r = 0.588 \text{ (FP)}$$

■ $n_{rp}/n_r = 0.287$ (Conner)


Due to the high primary RE gen. rate on axis, *E* has hollow profiles.


6) f in 2D momentum space-1

7) f in 2D momentum space-2

H. Nuga (JAEA)

Summary

- RE generation including hot-tail effect were simulated.
 - If the temperature drops quickly enough, the hot-tail effect becomes remarkable.
 - In the relatively-slow thermal quench cases, $\tau_q > 0.25$ msec, Fokker-Planck primary RE gen. rate returns similar results to that of analytical one.
 - It seems that thermal quench time affects the pitch angle of REs.
 - The threshold value of τ_q which affects hot-tail effect can be estimated from the slowing down time τ_s