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MHD modes in high-g tokamaks @

« For realizing economical fusion reactor, it is important to develop
a MHD equilibrium with high-£; g is the ratio between plasma
thermal pressure and magnetic pressure.

In such a high-£ equilibrium, MHD modes sometimes become
unstable, and a long wavelength mode induces “disruption”.

+ Such a MHD mode is usually A
stabilized by surrounding the '
plasma with conducting wall.

* However, if the conducting wall
has resistivity, so-called resistive ,
wall mode (RWM) becomes

unstable[Strait POP1994 etc.].

=> Disruption No-Wall(n=00) Resistive-Wall Ideal-Wall(n=0)

Boundary Condition (Wall Resistivity)
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Rotation is responsible for RWM stability(®>

« About 20 years ago, theoretical papers identified that RWM can
be stabilized by plasma toroidal rotation [Bondeson PoP1994].

* Rotation stabilization has been observed experimentally in many
tokamaks [LaHaye PoP2004 etc.].

* However, high-3 plasma discharges are sometimes terminated
by MHD instability even when plasma rotation successfully
stabilize RWM[Matsunaga IAEA2008, Sabbagh NF2010]

* For realizing high-B steady-state =
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fusion reactor, it is necessary to L
understand the reason why such E ZZ
disruptive MHD instability appears. " o P — —
Does plasma rotation 0 o o0 209 0 oo
dVi/dr [x107/s]
alwayS Stab”ize RWM? RWM experimental results in JT-60U
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Theoretical works predicted @2
rotation can destabilize RWM

. In a cylindrical plasma, several theoretical works identified
that RWM can be destabilized due to

a. coupling between RWM and stable MHD discrete mode
[Finn PoP1996, Lashmore-Davies PoP2001/JPP20035].

b. wall resistivity destabilizing negative energy
modes[Lashmore-Davies JPP2005/Hirota PST2009].

c. resonance between stable MHD discrete mode and
continuum when their energies have opposite signs
[Hirota PST2009].

Do these mechanisms excite RWM in tokamaks?
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Basic equations @

The ideal MHD stability code, MINERVA[Aiba CPC2009] solves the
Frieman-Rotenberg equation [Frieman RMP1960] with sound wave
damping force modelling ion Landau damping[Chu PoP1995]

aaf V>—§ F(E)+Fy, (v,),

F(5)=F (5)+V ®[P§ Q(u-Vju-pu® (u-V)Jj
F. : Force operator (same vector form as that in static equilibrium case)

u : Equilibrium rotation velocity

F,,(v,)=-x,|k,v,|pv,B/B: Sound wave damping force
v, = %+((u-V)§)-B/B

To identify RWM stability in tokamak plasmas, RWMaC [Shiraishi
NF2014] Is implemented to MINERVA[Aiba PoP2011].

d aD,,
€029+ 2€100u- 1) 2= GF @) + Fop o) + 5w, — 22200
MINERVA RWMaC

oWy vacuum energy

D,, : energy dissipated in the resistive wall 5/16



Analysis for the simplest case ROARA

To examine whether RWM in a torus plasma is destabilized
by plasma rotation as in a cylindrical plasma, we try to
simplify the problem/equilibrium.
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« RWM stability is analyzed in this plasma with a variety

of rigid toroidal rotation.

« At first, plasma compression is neglected.
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Unstable mode appears due to coupling@@
between RWM and stable modes

In this simplest case, RWM
destabilization by rotation is observed.
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There are 3 resonant modes.
f#’"' i b. RSAE (m = 3)

ot | -~ c. External kink (mainly m = 4)

RsiE P d. GAE (m = 2)

| '_ . RSAE _ Mode frequencies are Doppler-shifted

""""" TR when rotation frequency passes the
Q40/Wno eigenmode frequency.
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Mode resonance is essential for this RWM destabilization
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Plasma compression increases @2
the number of resonant mode

In the compressible case with I' = 5/3, the RWM destabilization is
also observed. However, we found the following difference from the
result in the incompressible case.
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—4 | With plasma compression,
RWM can become stable with
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Sound wave continuum will be @2»
responsible for a new mode

Beta-induced eigenmode

| da=1.2 m=3
0=0.0105

One of the new modes exists above m = 3 sound wave continuum.
= The mode would be beta-induced reversed shear eigenmode.

The other mode exists below m = 3 shear Alfven continuum with

flat g profile near axis.
= The mode would be AE (GAE?). This mode appears due to

stabilizing original RWM in the incompressible case.
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Sound wave damping stabilizes @)
low-frequency resonant modes

Incompressible case Compressible case
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In the incompressible case, sound wave damping o
has no effect on stability (consistent with theory). e I

Also, in the compressible case, stability of the unstable ;z .
mode coupling with RSAE/kink/ GAE changes little.

The main different caused by sound wave
damping is the stabilization of the mode in low-
rotation frequency. (this would be consistent
with theoretical prediction) 10/16




Equilibrium with low-freq. @
local minima/maxima of continua

In the simplest flat g equilibrium, MHD instability robustly appears.
Hereafter, we make the equilibrium more experiment-relevant.

2nd step: g profile changes to weak reversed shear circular one

Plasma parameters o v In this plasma, there are
B, =0.7 VI Lo ) = & several local
Br = 1.0[T] ./ o minima/maxima of sound
I, = 0.6[MA] [, wave and shear Alfven
Gmin = 2.07 2% continua in w < 0.05wy.
d_ > gt i ®  (conventional tokamaks
a ' A 05 o usually have Q; < 0.05w ()
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« Plasma rotation profile is kept as rigid toroidal rotation.

« Since ion Landau damping effect becomes weak in tokamaks
when rotation frequency is small compared with the sound
wave one [Mikhailovskii PPR1995, Bondeson PoP1996],
k_ || changes from 0 to 0.5. 116



Resonant modes are excited by coupling @@
with low-frequency eigenmodes

Dependence of y on Q4 Dependence of w on Q4
© v : g " T

—e— =00 —— 0.0 A% -
w =0.125] | e g5 =0125) F ©,-0.019 |
- k=025 I =0.25 | ;
K”=0.5 1 K'”:O5 ,"

A

“0.04

0.01

* With ideal MHD model, we found several local maxima of Q4

dependence of y, and two modes are clearly Doppler-shifted.
(From continuum spectra, we can speculate them as the
excited beta-induced eigenmode (m = 2) and RSAE (m = 3))

* Rotation with ion Landau damping effect stabilized RWM, but
the destabilized mode remains unstable in 0.03 < Q4, < 0.044.

* Negative energy ideal modes are strongly stabilized by ion

Landau damping (mode frequency doesn’t show clearly
Doppler-shift when k; # 0). 12/16



RWM destabilization by rotation @

Last step: D-shape, and toroidal rotation with shear
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|deal wall position required for marginal
stability is the same in both normal shear and
reversed shear plasmas (d/al;jeq = 1.43).

Rotation profile is given artificially as

Qg = Qcpo(l — 1°) W yo.

Q4: rotation freq. on axis

w40: Shear Alfven freq. on axis
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