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Motivation for L-H transition simulation by RMHD model

• Understanding of L-H transition mechanism is one of key issues for

◦ designing a high performance core plasma

◦ controlling the heat load on plasma facing materials

• Integrated transport simulation framework for L-H transition in JAEA[1]

◦ 1.5D core transport code TOPICS + 2D SOL/divetor transport code SONIC

– CDBM turbulent transport model

◦ Qualitative evaluation was accomplished in this framework

– Spontaneous turbulence quench at edge region by mean flow shear

◦ Quantitative evaluations of L-H transition were not accomplished in this
framework

– Pressure at pedestal top

– Power threshold for L-H transition



(left): concept of integrated transport simula-

tion framework by TOPICS + SONIC

(right): time evolutions of Te and χ

Improvement of turbulent transport model or development of first principal
simulation framework are required for quantitative analysis of L-H transition.

• Improvement of LH transition simulation frameworks through comparison
with first principal and integrated transport simulations

◦ From first principal simulation to integrated transport simulation



– Improvement of CDBM turbulent transport model by introducing

· turbulence suppression by zonal flow shear

· contribution from SOL/divertor transport

◦ From integrated transport simulation to first principal simulation

– Improvement of SOL/Divetor physics model in BOUT++ by

· Implementation of neutral particle/impurity transport model

· Improvement of sink model

• Framework for whole-time edge plasma simulation

◦ LH transition (1-2): BOUT++

◦ Pedestal formation (2-3): TOPICS/SONIC

◦ ELM collapse (3-0): BOUT++
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In this study we have been developing L-H transition simulation framework with
CDBM turbulence based on 3-D nonlinear edge MHD/turbulence code BOUT++

[1] M. Yagi et al., Contrib. Plasma Phys. 52, 372 (2012)



Minimal set for L-H transition simulation by RMHD model

• 3D flux-driven simulations of L-H transition by 2-field RMHD model[2,3]

◦ Resistive ballooning mode turbulence

◦ Sheared mean flow by poloidal damping

◦ Self-consistent pressure evolution by dynamic heat balance
∂UE

∂t
= − [φ,UE] −B2∇‖J‖ + b0 × κ · ∇P + µ⊥∇2

⊥UE−µnc

ˆ

ŪE − δ(knc − 1)ŪD

˜

∂P

∂t
= − [φ, P ] + χ‖∇2

‖P + χ⊥∇2
⊥P + Sp − Lp

UE = ∇2
⊥φ, UD = ∇2

⊥P , J = S∇‖φ,
δ = di/4B0, da: skin depth, Pi = Pe = P/2,
[f, g] = b ×∇⊥f · ∇⊥g, f̄ : (0,0)-component
of f , Sp: heat source, Lp: heat sink,
µnc, knc: quantities related to neoclassical
flow/friction coefficients, ni = const.

Red term describes poloidal damping

[2] L. Chônè et al. Phys. Plasmas 21, 070702
(2014)

[3] G.Y. Park et al., IAEA-FEC 2014 TH-8-1

L-H transition simulation by L. Chônè [2]



Derivation of poloidal damping term

length LN = Rmag vorticity UN = 1/tN
magnetic field BN = Bmag vector potential(ish) ψN = LN

velocity VN = VAN = BN/
√
µ0mini electrostatic potential φN = VNLNB0

time tN = LN/VN resistivity ηN = µ0VNLN

viscosity µN = L2
N/tN hyper-resistivity λN = µ0V̄AL

3
N

pressure PN = B2
N/2µ0 diffusivity χN = L2

N/tN
current JN = −B0/µ0LN viscosity µN = L2

N/tN
frequency νN = t−1

N heat source & sink WN = PN/tN

• Poloidal damping term is derived from

◦ Gianakon’s heuristic closure for parallel viscous force[3]

◦ Radial force balance with poloidal rotation of ion

◦ Parallel force balance of ion in neoclassical transport theory[4]

• Gianakon’s heuristic closure for parallel viscous force in SI unit

∇ ·
↔
Πi‖ = mini(

˙

B2¸

/B2
θ)

`

µi1V̄iθ + µi2W̄iθ

´

eθ, W i = 2qi/5Pi (1)

B = ∇ζ ×∇ψ +Bζ∇ζ, eθ =
√
g∇ζ ×∇ψ, gψζ = gθζ = 0, gζζ = R−2



◦ (ψ, θ, ζ) is the orthogonal toroidal coordinates

◦ Red colored term is additional term expressing contribution from heat flux

◦ Contribution from heat flux results in offset poloidal flow term

• Ion poloidal flow by radial force balance w/ poloidal rotation

∇P̄i · ∇ψ = eini(−∇φ̄+ V̄ i × B) · ∇ψ

V̄iθ =

√
ggψψ

Bζ

d

dψ

„

φ̄+
P̄i

eini

«

,

˙

B2
¸

B2
θ

V̄iθeθ =
B0

B2
p

b0 ×∇
„

φ̄+
P̄i

eini

«

(2)

• Ion poloidal heat flow determined by parallel force balance in ε� 1 limit

µ̂i1V̂
θ
i + µ̂i2Ŵ

θ
i = 0, ε =

r

R
, f̂θi (ψ) =

fθ

Bθ
, µ̂ij =

3
˙

(∇‖B)2
¸

〈B2〉 µij

µ̂i2V̂iθ + µ̂i3Ŵiθ = lii22

„

V̄2iB

〈B2〉 + Ŵi

«

, lii22 � µ̂ij , V̄2i = − Bζ
eiB

dT̄i

dψ
, V̄iθ = −µi2

µi1
W̄iθ

W̄iθ =

√
ggψψ

Bζ

d

dψ

„

Pi

eini

«

,

˙

B2
¸

B2
θ

W̄iθeθ =
B0

B2
p

b0 ×∇
„

P̄i

eini

«

(3)

• From (1)-(3), Gianakon’s heuristic closure becomes

∇ ·
↔
Πi‖ =miniµi1

B0

B2
p

b0 ×∇ψ
»

d

dψ

„

φ̄+
P̄i

eini

«

− knc
d

dψ

„

P̄i

eini

«–



Red terms describes radial force balance with neoclassical poloidal flow

◦ Interpolation formula for µi1 and knc

µi1 =
0.66ε1/2νi

(1 + 1.03ν
1/2
i∗ + 0.31νi∗)(1 + 0.66ε3/2νi∗)

knc =
1

1 + ν2
i∗ε3

 

1.17 − 0.35ν
1/2
i∗

1 + 0.7ν
1/2
i∗

− 2.1ν2
i∗ε3

!

• Gianakon’s heuristic closure results in poloidal damping term

b · ∇ ×∇ ·
↔
Πi‖ =miniµnc

»

∇2
⊥
φ̄

B0
− (knc − 1)∇2

⊥
P̄i

einiB0

–

, µnc = µi1
B2

0

B2
p

−−−−−−−−→
normalize µnc

ˆ

ŪE − δ(knc − 1)ŪD

˜

,

◦ with self-consistently evolving coefficients µnc(νi∗) → µnc(P ), knc(νi∗) → knc(P )

[4] T.A. Gianakon et al., Phys. Plasmas 9, 536 (2002)
[5] S.P Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981)



Preliminary simulations by simplified 2-field model by BOUT++

• Simplified 2-field RMHD model for LH transition

∂UE

∂t
= − [φ,UE] −B2

0∇‖J‖ + b0 × κ · ∇P + µ⊥∇2
⊥U − µ∗

nc

ˆ

ŪE − δk∗ncŪD

˜

∂P

∂t
= − [φ, P ] + χ⊥∇2

⊥P + χ‖∇2
‖P + Sp − PLp

η = µ⊥ = χ⊥ = 10−6, χ‖ = 10−2

◦ Simplified poloidal damping coefficients

– Profiles of µ∗
nc and k∗nc are given by hyper-

bolic functions by reference to Ref. [2,3]

– Interaction between Er shear and diamag.
flow through µnc and knc are neglected

◦ Parabolic heat source and step heat sink

We have investigated impact of poloidal
damping on RMB turbulence



• Computational grid generated by circular equilibrium generator of BOUT++

◦ Input parameters
R0 = 300[cm], a0 = 75[cm], B0 = 4[T],
βp = 0.01, ∆ = 5[cm], ni = 1.0 × 1019[m−3]

q(ρ) = 1.5 + 2ρ2, ρ = r/a0

p1(ρ) = 0.5

„

1 − tanh

»

(ρ− 0.4)

0.225

–«

◦ Computational domain:
radial: 0.47 ≤ ψ ≤ 1.19, poloidal: 0 ≤ θ ≤ 2π, toroidal: 0 ≤ ζ ≤ 2π/6

◦ Resolution:
radial× poloidal × toroidal = 132 × 128 × 65

◦ Positions of radial boundary:
Core boundary: radial index = 0, ρ = 0.6, ψ = 0.47
Separatrix: radial index = 98, ρ = 1.0, ψ = 1.0
SOL boundary: radial index = 132, ρ ' 1.2, ψ = 1.19

◦ Boundary conditions
∂UE/∂ψ = 0, ∂φ/∂ψ = 0, ∂P/∂ψ = 0 at core boundary
UE = 0, φ = 0, P = 0 at SOL boundary



• Simulation results of w/ poloidal damping case

◦ toroidal mode structure at ψ ' 0.76 on outer mid-plane (a)

◦ poloidal plot on ζ = 0 plane at t = 600τA (b), t = 800τA (c), t = 1000τA(d)

◦ time evolution of flux surface averaged Er (e) and and P (f)

* RBM structure m = 36 (q = 3, n = 12) was observed at t = 800τA
* Strongly sheared Er was observed at the vicinity of separatrix

* Pedestal-like P profile was obtained



• Simulation results of w/o poloidal damping case

◦ toroidal mode structure at ψ ' 0.76 on outer mid-plane (a)

◦ poloidal plot on ζ = 0 plane at t = 600τA (b), t = 850τA (c), t = 1000τA(d)

◦ time evolution of flux surface averaged Er (e) and and P (f)

* RBM structure m = 36 (q = 3, n = 12) was observed at t = 850τA
* After t ' 850τA, simulation was broken and unphisical results are ob-

tained. Improvement of simulation settings is required



Summary and conclusions

• Summary

◦ The detailed derivation of poloidal damping term was described

– NC poloidal damping term was derived from

· Gianakon’s closure for parallel viscous force

· Radial force balance with poloidal flow of ion

· Parallel force balance of ion in neoclassical transport theory

◦ Preliminary simulations by 2-field RMHD model + simplified poloidal
damping + dynamic heat balance were demonstrated by BOUT++

– RBM were observed in both w/ and w/o NC poloidal damping term

– Poloidal damping generated strongly sheared radial electric field and pedestal-
like pressure in the vicinity of the separatrix

• Future work

◦ Development of postscripts for turbulence analysis

◦ Implementation of self-consistent µnc and knc

◦ LH transition simulation by 3-field RMHD model



(extra) L-H transition simulation framework by 3-field RMHD

• 3-field RMHD model for L-H transition with CDBM turbulence

∂Ψ

∂t
= − [φ,Ψ] − 1

B0
∇0

‖ (B0φ) + d∗i ∇‖P + ηJ‖ − λ∇2
⊥J‖

∂U

∂t
= − [ϕ,U ] +

d∗i
2

`

[P,U ] + [ϕ,UD] + ∇2
⊥ [P,ϕ]

´

−B2
0∇‖J‖ + b0 × κ · ∇P + µ⊥∇2

⊥U − µnc

ˆ

ŪE − δ(knc − 1)ŪD

˜

∂P

∂t
= − [φ, P ] + χ⊥∇2

⊥P + χ‖∇2
‖P + Sp − Lp

Ψ = ψ − d2
eJ‖, ϕ = φ+ d∗i P , U = ∇2

⊥ϕ, J‖ = ∇2
⊥ψ, d∗i = di/4B0

◦ CDBM turbulence + poloidal damping + dynamic heat balance

◦ 2-field RMHD model for L-H transition is reproduced if

– Two-fluid effects are neglected (de, d
∗
i → 0)

– Electrostatic turbulence is assumed, (J‖ = η−1∇‖φ)


