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Motivation for L-H transition simulation by RMHD model

e Understanding of L-H transition mechanism is one of key issues for

o designing a high performance core plasma

o controlling the heat load on plasma facing materials
e Integrated transport simulation framework for L-H transition in JAEA!!

o 1.5D core transport code TOPICS + 2D SOL /divetor transport code SONIC
— CDBM turbulent transport model

o Qualitative evaluation was accomplished in this framework
— Spontaneous turbulence quench at edge region by mean flow shear

o Quantitative evaluations of L-H transition were not accomplished in this
framework

— Pressure at pedestal top
— Power threshold for L-H transition
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Improvement of turbulent transport model or development of first principal

simulation framework are required for quantitative analysis of L-H transition.

¢ Improvement of LH transition simulation frameworks through comparison
with first principal and integrated transport simulations

© From first principal simulation to integrated transport simulation



— Improvement of CDBM turbulent transport model by introducing
- turbulence suppression by zonal flow shear
- contribution from SOL /divertor transport

© From integrated transport simulation to first principal simulation

— Improvement of SOL/Divetor physics model in BOUT++ by
- Implementation of neutral particle/impurity transport model
- Improvement of sink model
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® Framework for whole-time edge plasma simulation .
|deal MHD limit

o LH transition (1-2): BOUT++
o Pedestal formation (2-3): TOPICS/SONIC

-
-
--

Pedestral pressure gradi

o ELM collapse (3-0): BOUT++

heating power )

In this study we have been developing L-H transition simulation framework with
CDBM turbulence based on 3-D nonlinear edge MHD /turbulence code BOUT++

[1] M. Yagi et al., Contrib. Plasma Phys. 52, 372 (2012)



Minimal set for L-H transition simulation by RMHD model

e 3D flux-driven simulations of L-H transition by 2-field RMHD model!?3!

o Resistive ballooning mode turbulence
o Sheared mean flow by poloidal damping
o Self-consistent pressure evolution by dynamic heat balance
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Derivation of poloidal damping term
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VN — til
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vorticity

vector potential(ish)
electrostatic potential
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heat source & sink
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Wn = Px/in

® Poloidal damping term is derived from

o Gianakon'’s heuristic closure for parallel viscous force

3]

o Radial force balance with poloidal rotation of ion

o Parallel force balance of ion in neoclassical transport theory!*

e Gianakon’s heuristic closure for parallel viscous force in Sl unit
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o (1,0,() is the orthogonal toroidal coordinates
o Red colored term is additional term expressing contribution from heat flux

o Contribution from heat flux results in offset poloidal flow term
¢ lon poloidal flow by radial force balance w/ poloidal rotation
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¢ From (1)-(3), Gianakon’s heuristic closure becomes
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Red terms describes radial force balance with neoclassical poloidal flow

o Interpolation formula for 1;; and k..
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e Gianakon’s heuristic closure results in poloidal damping term
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o with self-consistently evolving coefficients pnc(vis) — pinc(P),  knc(Vix) — kne(P)
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Preliminary simulations by simplified 2-field model by BOUT 4+

e Simplified 2-field RMHD model for LH transition
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e Computational grid generated by circular equilibrium generator of BOUT++

o Input parameters
Ro = 300[cm], ap = 75[cm]|, By = 4[T],
By = 0.01, A = 5[cm], n; = 1.0 x 10" [m ]

q(p) = 1.5+ 2p%, p=r/ao
pi(p) = 0.5 (1 ~ tamh [<p - 0-4>D
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o Computational domain:
radial: 0.47 < < 1.19, poloidal: 0 < 60 < 27, toroidal: 0 < { < 27/6

o Resolution:
radial x poloidal x toroidal = 132 x 128 x 65

o Positions of radial boundary:
Core boundary: radial index = 0, p=0.6, =047
Separatrix: radial index =98, p=1.0, ¥ =1.0
SOL boundary: radial index = 132, p~1.2, ¢ =1.19

© Boundary conditions
OUg /0y =0, 0¢/0y =0, OP/0y =0 at core boundary
Ug =0, ¢ =0, P=0 at SOL boundary



e Simulation results of w/ poloidal damping case

o toroidal mode structure at ¥ ~ 0.76 on outer mid-plane (a)
o poloidal plot on { = 0 plane at ¢t = 60074 (b), t = 80074 (c), t = 100074(d)
o time evolution of flux surface averaged FE,. (e) and and P (f)
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* RBM structure m = 36 (¢ = 3, n = 12) was observed at ¢t = 80074
* Strongly sheared FE, was observed at the vicinity of separatrix
* Pedestal-like P profile was obtained



e Simulation results of w/o poloidal damping case
o toroidal mode structure at ¥ ~ 0.76 on outer mid-plane (a)
o poloidal plot on ( = 0 plane at t = 60074 (b), t = 85074 (c), t = 100074 (d)

o time evolution of flux surface averaged F,. (e) and and P (f)
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* RBM structure m = 36 (¢ = 3, n = 12) was observed at ¢t = 85074

* After t ~ 85074, simulation was broken and unphisical results are ob-
tained. Improvement of simulation settings is required
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Summary and conclusions

¢ Summary

o The detailed derivation of poloidal damping term was described

— NC poloidal damping term was derived from
- Gianakon's closure for parallel viscous force
- Radial force balance with poloidal flow of ion
- Parallel force balance of ion in neoclassical transport theory

o Preliminary simulations by 2-field RMHD model + simplified poloidal
damping + dynamic heat balance were demonstrated by BOUT4+

— RBM were observed in both w/ and w/o NC poloidal damping term

— Poloidal damping generated strongly sheared radial electric field and pedestal-
like pressure in the vicinity of the separatrix

e Future work

o Development of postscripts for turbulence analysis
o Implementation of self-consistent i, and k.
o LH transition simulation by 3-field RMHD model



(extra) L-H transition simulation framework by 3-field RMHD

o 3-field RMHD model for L-H transition with CDBM turbulence
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o CDBM turbulence + poloidal damping + dynamic heat balance
o 2-field RMHD model for L-H transition is reproduced if

— Two-fluid effects are neglected (de, di — 0)

— Electrostatic turbulence is assumed, (J; = 77_1V||qb)



