Development of L-H Transition Simulation Framework with BOUT++ code

H. Seto* and M. Yagi

Japan Atomic Energy Agency, Aomori, Japan

in collaboration with

G. Breyiannis¹, B.D. Dudson² and X.Q. Xu³

¹ Joint Research Centre, Italy

²York Plasma Institute, Department of Physics, University of York, UK

³Lawrence Livermore National Laboratory, CA, USA

Motivation for L-H transition simulation by RMHD model

- Understanding of L-H transition mechanism is one of key issues for
 - designing a high performance core plasma
 - controlling the heat load on plasma facing materials
- Integrated transport simulation framework for L-H transition in JAEA^[1]
 - \circ 1.5D core transport code **TOPICS** + 2D SOL/divetor transport code **SONIC**
 - CDBM turbulent transport model
 - Qualitative evaluation was accomplished in this framework
 - Spontaneous turbulence quench at edge region by mean flow shear
 - Quantitative evaluations of L-H transition were not accomplished in this framework
 - Pressure at pedestal top
 - Power threshold for L-H transition

Improvement of turbulent transport model or development of first principal simulation framework are required for quantitative analysis of L-H transition.

- Improvement of LH transition simulation frameworks through comparison with first principal and integrated transport simulations
 - From first principal simulation to integrated transport simulation

- Improvement of CDBM turbulent transport model by introducing
 - \cdot turbulence suppression by zonal flow shear
 - contribution from SOL/divertor transport
- From integrated transport simulation to first principal simulation
 - Improvement of SOL/Divetor physics model in BOUT++ by
 - · Implementation of neutral particle/impurity transport model
 - · Improvement of sink model
- Framework for whole-time edge plasma simulation
 - LH transition (1-2): BOUT++
 - Pedestal formation (2-3): TOPICS/SONIC
 - ELM collapse (3-0): BOUT++

In this study we have been developing L-H transition simulation framework with CDBM turbulence based on 3-D nonlinear edge MHD/turbulence code BOUT++ $\,$

[1] M. Yagi et al., Contrib. Plasma Phys. 52, 372 (2012)

Minimal set for L-H transition simulation by RMHD model

- 3D flux-driven simulations of L-H transition by 2-field RMHD model^[2,3]
 - Resistive ballooning mode turbulence
 - Sheared mean flow by poloidal damping

• Self-consistent pressure evolution by dynamic heat balance

$$\frac{\partial U_{\rm E}}{\partial t} = -\left[\phi, U_{\rm E}\right] - B^2 \nabla_{\parallel} J_{\parallel} + \boldsymbol{b}_0 \times \boldsymbol{\kappa} \cdot \nabla P + \mu_{\perp} \nabla_{\perp}^2 U_{\rm E} - \mu_{\rm nc} \left[\bar{U}_{\rm E} - \delta(k_{\rm nc} - 1) \bar{U}_{\rm D} \right]$$

$$\frac{\partial P}{\partial t} = -\left[\phi, P\right] + \chi_{\parallel} \nabla_{\parallel}^2 P + \chi_{\perp} \nabla_{\perp}^2 P + S_p - L_p$$

$$\begin{split} U_{\rm E} &= \nabla_{\perp}^2 \phi, \ U_{\rm D} = \nabla_{\perp}^2 P, \ J = S \nabla_{\parallel} \phi, \\ \delta &= d_{\rm i}/4B_0, \ d_a: \ \text{skin depth}, \ P_{\rm i} = P_{\rm e} = P/2, \\ [f,g] &= \boldsymbol{b} \times \nabla_{\perp} f \cdot \nabla_{\perp} g, \ \bar{f}: \ (0,0)\text{-component} \\ \text{of } f, \ S_{\rm p}: \ \text{heat source}, \ L_{\rm p}: \ \text{heat sink}, \\ \mu_{\rm nc}, \ k_{\rm nc}: \ \text{ quantities related to neoclassical} \\ \text{flow/friction coefficients}, \ n_{\rm i} = \text{const.} \end{split}$$

Red term describes poloidal damping

[2] L. Chônè *et al.* Phys. Plasmas **21**, 070702 (2014)

[3] G.Y. Park et al., IAEA-FEC 2014 TH-8-1

L-H transition simulation by L. Chônè [2]

Derivation of poloidal damping term

length	$L_{\rm N} = R_{\rm mag}$	vorticity	$U_{\rm N} = 1/t_{\rm N}$
magnetic field	$B_{\rm N} = B_{\rm mag}$	vector potential(ish)	$\psi_{\rm N} = L_{\rm N}$
velocity	$V_{\rm N} = V_{A\rm N} = B_{\rm N} / \sqrt{\mu_0 m_{\rm i} n_{\rm i}}$	electrostatic potential	$\phi_{\rm N} = V_{\rm N} L_{\rm N} B_0$
time	$t_{\rm N} = L_{\rm N}/V_{\rm N}$	resistivity	$\eta_{\rm N} = \mu_0 V_{\rm N} L_{\rm N}$
viscosity	$\mu_{\rm N} = L_{\rm N}^2 / t_{\rm N}$	hyper-resistivity	$\lambda_{\rm N} = \mu_0 \bar{V}_A L_{\rm N}^3$
pressure	$P_{\rm N} = B_{\rm N}^2 / 2\mu_0$	diffusivity	$\chi_{\rm N} = L_{\rm N}^2 / t_{\rm N}$
current	$J_{\rm N} = -B_0/\mu_0 L_{\rm N}$	viscosity	$\mu_{\rm N} = L_{\rm N}^2 / t_{\rm N}$
frequency	$\nu_{\rm N} = t_{\rm N}^{-1}$	heat source & sink	$W_{\rm N} = P_{\rm N}/t_{\rm N}$

- Poloidal damping term is derived from
 - \circ Gianakon's heuristic closure for parallel viscous force^[3]
 - $\circ\,$ Radial force balance with poloidal rotation of ion
 - \circ Parallel force balance of ion in neoclassical transport theory^[4]
- Gianakon's heuristic closure for parallel viscous force in SI unit

$$\nabla \cdot \stackrel{\leftrightarrow}{\Pi_{i\parallel}} = m_{i}n_{i}(\langle B^{2} \rangle / B_{\theta}^{2}) \left(\mu_{i1}\bar{V}_{i\theta} + \mu_{i2}\bar{W}_{i\theta} \right) \boldsymbol{e}_{\theta}, \quad \boldsymbol{W}_{i} = 2\boldsymbol{q}_{i}/5P_{i}$$
(1)
$$\boldsymbol{B} = \nabla \zeta \times \nabla \psi + B_{\zeta}\nabla \zeta, \quad \boldsymbol{e}_{\theta} = \sqrt{g}\nabla \zeta \times \nabla \psi, \quad g^{\psi\zeta} = g^{\theta\zeta} = 0, \quad g^{\zeta\zeta} = R^{-2}$$

- $\circ~(\psi,\theta,\zeta)$ is the orthogonal toroidal coordinates
- Red colored term is additional term expressing contribution from heat flux
- $\circ~$ Contribution from heat flux results in offset poloidal flow term
- Ion poloidal flow by radial force balance w/ poloidal rotation

$$\nabla \bar{P}_{i} \cdot \nabla \psi = e_{i} n_{i} (-\nabla \bar{\phi} + \bar{V}_{i} \times B) \cdot \nabla \psi$$

$$\bar{V}_{i\theta} = \frac{\sqrt{g} g^{\psi\psi}}{B_{\zeta}} \frac{d}{d\psi} \left(\bar{\phi} + \frac{\bar{P}_{i}}{e_{i} n_{i}} \right), \quad \frac{\langle B^{2} \rangle}{B_{\theta}^{2}} \bar{V}_{i\theta} \boldsymbol{e}_{\theta} = \frac{B_{0}}{B_{p}^{2}} \boldsymbol{b}_{0} \times \nabla \left(\bar{\phi} + \frac{\bar{P}_{i}}{e_{i} n_{i}} \right)$$
(2)

• Ion poloidal heat flow determined by parallel force balance in $\varepsilon \ll 1$ limit

• From (1)-(3), Gianakon's heuristic closure becomes

$$\nabla \cdot \stackrel{\leftrightarrow}{\Pi}_{i\parallel} = m_{i} n_{i} \mu_{i1} \frac{B_{0}}{B_{p}^{2}} \boldsymbol{b}_{0} \times \nabla \psi \left[\frac{\mathrm{d}}{\mathrm{d}\psi} \left(\bar{\phi} + \frac{\bar{P}_{i}}{e_{i} n_{i}} \right) - k_{\mathrm{nc}} \frac{\mathrm{d}}{\mathrm{d}\psi} \left(\frac{\bar{P}_{i}}{e_{i} n_{i}} \right) \right]$$

Red terms describes radial force balance with neoclassical poloidal flow

 \circ Interpolation formula for μ_{i1} and k_{nc}

$$\mu_{i1} = \frac{0.66\varepsilon^{1/2}\nu_{i}}{(1+1.03\nu_{i*}^{1/2}+0.31\nu_{i*})(1+0.66\varepsilon^{3/2}\nu_{i*})}$$
$$k_{nc} = \frac{1}{1+\nu_{i*}^{2}\varepsilon^{3}} \left(\frac{1.17-0.35\nu_{i*}^{1/2}}{1+0.7\nu_{i*}^{1/2}}-2.1\nu_{i*}^{2}\varepsilon^{3}\right)$$

• Gianakon's heuristic closure results in poloidal damping term

$$\begin{split} \boldsymbol{b} \cdot \nabla \times \nabla \cdot \stackrel{\leftrightarrow}{\Pi}_{i\parallel} = & m_{i} n_{i} \mu_{nc} \left[\nabla_{\perp}^{2} \frac{\bar{\phi}}{B_{0}} - (k_{nc} - 1) \nabla_{\perp}^{2} \frac{\bar{P}_{i}}{e_{i} n_{i} B_{0}} \right], \quad \mu_{nc} = \mu_{i1} \frac{B_{0}^{2}}{B_{p}^{2}} \\ \overbrace{\text{normalize}}^{\text{normalize}} \mu_{nc} \left[\bar{U}_{E} - \delta(k_{nc} - 1) \bar{U}_{D} \right], \end{split}$$

• with self-consistently evolving coefficients $\mu_{nc}(\nu_{i*}) \rightarrow \mu_{nc}(P), \quad k_{nc}(\nu_{i*}) \rightarrow k_{nc}(P)$

• Simplified 2-field RMHD model for LH transition

$$\frac{\partial U_{\rm E}}{\partial t} = -\left[\phi, U_{\rm E}\right] - B_0^2 \nabla_{\parallel} J_{\parallel} + \boldsymbol{b}_0 \times \boldsymbol{\kappa} \cdot \nabla P + \mu_{\perp} \nabla_{\perp}^2 U - \mu_{\rm nc}^* \left[\bar{U}_{\rm E} - \delta k_{\rm nc}^* \bar{U}_{\rm D}\right]$$
$$\frac{\partial P}{\partial t} = -\left[\phi, P\right] + \chi_{\perp} \nabla_{\perp}^2 P + \chi_{\parallel} \nabla_{\parallel}^2 P + S_p - PL_p$$

 $\eta = \mu_{\perp} = \chi_{\perp} = 10^{-6}, \quad \chi_{\parallel} = 10^{-2}$

• Simplified poloidal damping coefficients

- Profiles of $\mu_{\rm nc}^*$ and $k_{\rm nc}^*$ are given by hyperbolic functions by reference to Ref. [2,3]
- Interaction between E_r shear and diamag. flow through μ_{nc} and k_{nc} are neglected

• Parabolic heat source and step heat sink

We have investigated impact of poloidal damping on RMB turbulence

• Computational grid generated by circular equilibrium generator of BOUT++

• Input parameters

$$R_0 = 300[\text{cm}], a_0 = 75[\text{cm}], B_0 = 4[\text{T}],$$

 $\beta_p = 0.01, \Delta = 5[\text{cm}], n_i = 1.0 \times 10^{19}[\text{m}^{-3}]$
 $q(\rho) = 1.5 + 2\rho^2, \quad \rho = r/a_0$
 $p_1(\rho) = 0.5 \left(1 - \tanh\left[\frac{(\rho - 0.4)}{0.225}\right]\right)$

• **Computational domain**:

radial: $0.47 \le \psi \le 1.19$, poloidal: $0 \le \theta \le 2\pi$, toroidal: $0 \le \zeta \le 2\pi/6$

• **Resolution**:

 $\mathsf{radial} \times \mathsf{poloidal} \times \mathsf{toroidal} = 132 \times 128 \times 65$

- Positions of radial boundary: Core boundary: radial index = 0, $\rho = 0.6$, $\psi = 0.47$ Separatrix: radial index = 98, $\rho = 1.0$, $\psi = 1.0$ SOL boundary: radial index = 132, $\rho \simeq 1.2$, $\psi = 1.19$
- Boundary conditions

 $\partial U_{\rm E}/\partial \psi = 0$, $\partial \phi/\partial \psi = 0$, $\partial P/\partial \psi = 0$ at core boundary $U_{\rm E} = 0$, $\phi = 0$, P = 0 at SOL boundary

• Simulation results of w/ poloidal damping case

 \circ toroidal mode structure at $\psi \simeq 0.76$ on outer mid-plane (a)

- \circ poloidal plot on $\zeta = 0$ plane at $t = 600\tau_A$ (b), $t = 800\tau_A$ (c), $t = 1000\tau_A$ (d)
- \circ time evolution of flux surface averaged E_r (e) and and P (f)

- * RBM structure m = 36 (q = 3, n = 12) was observed at $t = 800\tau_A$
- * Strongly sheared E_r was observed at the vicinity of separatrix
- * Pedestal-like P profile was obtained

• Simulation results of w/o poloidal damping case

 \circ toroidal mode structure at $\psi \simeq 0.76$ on outer mid-plane (a)

- \circ poloidal plot on $\zeta = 0$ plane at $t = 600\tau_A$ (b), $t = 850\tau_A$ (c), $t = 1000\tau_A$ (d)
- \circ time evolution of flux surface averaged E_r (e) and and P (f)

* RBM structure m = 36 (q = 3, n = 12) was observed at $t = 850\tau_A$

* After $t \simeq 850\tau_A$, simulation was broken and unphisical results are obtained. Improvement of simulation settings is required

• Summary

- The detailed derivation of poloidal damping term was described
 - NC poloidal damping term was derived from
 - \cdot Gianakon's closure for parallel viscous force
 - $\cdot\,$ Radial force balance with poloidal flow of ion
 - \cdot Parallel force balance of ion in neoclassical transport theory
- Preliminary simulations by 2-field RMHD model + simplified poloidal damping + dynamic heat balance were demonstrated by BOUT++
 - RBM were observed in both w/ and w/o NC poloidal damping term
 - Poloidal damping generated strongly sheared radial electric field and pedestallike pressure in the vicinity of the separatrix
- Future work
 - **Development of postscripts for turbulence analysis**
 - \circ Implementation of self-consistent μ_{nc} and k_{nc}
 - LH transition simulation by 3-field RMHD model

(extra) L-H transition simulation framework by 3-field RMHD

• 3-field RMHD model for L-H transition with CDBM turbulence

$$\begin{split} \frac{\partial \Psi}{\partial t} &= -\left[\phi, \Psi\right] - \frac{1}{B_0} \nabla^0_{\parallel} \left(B_0 \phi\right) + d_i^* \nabla_{\parallel} P + \eta J_{\parallel} - \lambda \nabla^2_{\perp} J_{\parallel} \\ \frac{\partial U}{\partial t} &= -\left[\varphi, U\right] + \frac{d_i^*}{2} \left(\left[P, U\right] + \left[\varphi, U_{\rm D}\right] + \nabla^2_{\perp} \left[P, \varphi\right]\right) \\ &\quad - B_0^2 \nabla_{\parallel} J_{\parallel} + \mathbf{b}_0 \times \mathbf{\kappa} \cdot \nabla P + \mu_{\perp} \nabla^2_{\perp} U - \mu_{\rm nc} \left[\bar{U}_{\rm E} - \delta(k_{\rm nc} - 1)\bar{U}_{\rm D}\right] \\ \frac{\partial P}{\partial t} &= -\left[\phi, P\right] + \chi_{\perp} \nabla^2_{\perp} P + \chi_{\parallel} \nabla^2_{\parallel} P + S_p - L_p \end{split}$$

$$\Psi = \psi - d_{\rm e}^2 J_{\parallel}, \quad \varphi = \phi + d_{\rm i}^* P, \quad U = \nabla_{\perp}^2 \varphi, \quad J_{\parallel} = \nabla_{\perp}^2 \psi, \quad d_{\rm i}^* = d_{\rm i}/4B_0$$

- CDBM turbulence + poloidal damping + dynamic heat balance
- 2-field RMHD model for L-H transition is reproduced if
 - Two-fluid effects are neglected $(d_{\rm e}, d_{\rm i}^* \rightarrow 0)$
 - Electrostatic turbulence is assumed, $(J_{\parallel} = \eta^{-1} \nabla_{\parallel} \phi)$