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Introduction

* |n general, simple fluid moments of the gyro-
center distribution function (N, P, ...) are
different from physical fluid moments (n, p,...).

* |n particular, gyro-center particle flux in
standard gyrokinetic model does not include
diamagnetic and polarization-drift terms.

* We have to consider push-forward
representation of particle flux to recover the
diamagnetic and polarization-drift terms.



Standard gyrokinetic formulation

[Hahm PoF 1988, Brizard JPP 1989]

Two-step phase space transformation to remove fast gyro-motion
of a charged particle in a magnetic field.
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Small potential perturbation ¢ is introduced after Tg.

Tgc: guiding-center transformation (small parameter €5)

Tgy: gyro-center transformation (small parameter €5)



Particle flux representation

Two abstract push-forward representations of particle flux I' = n[v]

I'(r) = f d®Z J|Teev]|(D)|Tey F ()83 (| Teex|(Z) — 1)
I'(r) = f d®Z JTgy TecVF (2)83(Tgy Taéx — )

e Conventionally the first representation is used to derive explicit push-forward
representations of fluid moments from the standard gyrokinetic model.

* They give the same result, but more information on the gyro-center
transformation is needed to derive the polarization flux from the conventional
representation as shown below.



Pull-back transformation of F

Generally

2
€
TeyF = F + €5{S1, F} + = {1, {S1, F3} + €§(5,, F} + 0(e3)

S1, S5, ... : Scalar function generating the gyro-center transformation.

{,} : Guiding-center Poisson brackets [Littlejohn PoF 1981].
Equation determining S; [Brizard JPP 1989, Qin PoP 1998]

a5, B
-t {SllHO} = €Q

dt
where m
Guiding-center Hamiltonian Hy = > U? + uB
Oscillatory part of potential =X+ py) — (X + py))

t

Gyro-average



Generating function S,

Usually only the lowest order solution for S is considered:

e ~
s =2 [ gas

ep OF

Then T, F is approximated as ToyF = F + 5 n

But we cannot obtain the polarization flux from the conventional representation

with the lowest order §;, because time derivative of potential does not appear
at this order.

To obtain the polarization flux, we need the higher order solution for §; [Qin
PoP 1999, Belova 2001]

1/0
@ _ _ 1 _ (L)
S;7 = Q<at+Ub v)Jdgsl

where a constant magnetic field is assumed for simplicity.



Gyro-center displacement vector

When we use the pure push-forward representation, the higher order
solution is not necessary.
In the pure push-forward representation
TeiTedx =X+ po + py + -
TeHTadv = X+ fo + py + -
Gyro-center displacement vector [Brizard PoP 2008]
p1 = —{51, X+ po}
e (05,0 dS,0 B* 0S 1
_£ 10Po  0010P¢ n : 1 _b x VS,
m\ou 9§ 9& du mB, dU  eB,
In long wavelength limit, gyro-average of p; with the lowest order §; is given by

Vip
BQ
The polarization flux emerges from p,directly.

(p1) = —



[ with FLR terms

Belova derived an explicit representation of I' with FLR terms from the conventional
representation with 51(2) and S, as well as 51(1) [Belova PoP 2001].

From the above observations, we may obtain Belova’s result from the pure push-

forward representation using only 51(1).
We calculate I" using the pure push-forward representation with 51(1).

Generally, I' is divided into 3 parts [Pfirsch ZNA 1984, Brizard PoP 2008] :
F — ng - I‘pu] i Flllilg

I, = [ dUdudéXFJ : gyro-center flux
Ipol = %P: polarization flux (P is polarization vector)

Imag = V X M: magnetization flux (M is magnetization vector)



Gyro-center flux

We consider a slab plasma, then Hamilton equations are

1 : ;
X =Ub+ —=b ®, U=-eb:-V®, 4=0, £€=Q+ ——
& B =Y whr s 0 i B ou

Effective potential is given by
| T
@ = (p(X + po)) — 5({S1,8})

Using the lowest order solution for S; and taking the long wavelength limit,
we have

O(X, 1,t) = (X, 1) +

LV (X, 1) = o V(X 1)

(This is the same one in a gyro-kinetic model for flowing plasmas [Miyato
JPSJ 2009])

Gyro-center flux is obtained immediately

N b x V|V_p|? N P, bxVVip
2B B 2mf)? B

T, = NVijb+ Nvg —



Polarization flux=Magnetization flux

Polarization flux

0 1
Lo = & d*v {(m)FJ =S (<popo)FJ)]
o[ N 1
= Tu [B_Ov  omee VL ]

Magnetization flux

I‘mag =i M [—ﬂb_ P‘Lvi; 3V_LP_LVJ_\;

eB m2 B 2 m)2 L4620

L2 N My, B
T d S B
gig PTNQVE~V X5 o

This modifies NV;b in I‘gy
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Total particle flux

M NV,
. ATT/ 2 V11 ) I s
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Using a vector relation

pb x VVip — (Vip)b x V¢
= bx V(pVip) —bx V{(V.op)-(V.p)}
—2b x Vp-VV,.9p -V, (b xVp-Vp)

to delete the 3 term in the 2" line,
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Recover Belova’s result

, M NV
r = {mwvz “+V-(—'VL;,9Hb

1 2e0 BQ
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Nvg — ;
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Neglecting the 4™ line recovers Belova’s result obtained from the conventional
representation.
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Alternate representation

Using another vector relation,

pb x VVip — (Vip)b x Vo
= bx V(pVi¢)+V.i(bx Ve-Vp)
—2b x V- VV,p—b x V{(V.ip) - (V.p)}

and vg - VP, ~ —-0,P,

M, NV
- [m’“+v2, ~+V- ( ”vl,,)]

1 2e0 BO
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_gg’\;}va B -m;'-? (c;)t TVE- V) V.P,
v x |G- Bk DA,

13

- N

B2}

_,,b



Transformation to particle fluid moments

Using push-forward representations of particle fluid moments

ViP, + V- (‘—Vv )
14 1 - i <

n=IN+

2e B} QB

oM NV
nuy = NVj + V1 261(; o ( Boll Viap)

o o= B e 2 e sl
P1L =1 2¢0) Mo T 4 OB 1%

Gyrofluid moments are transformed as

I' = nyb+nvg
7, n 1 9,
e (a + Vg - V) EVL‘V = ‘m,QQ (a + vg - V) V_Lp_]_
PL 1 pLVip Vip,-V.ip o Mo
VXx|[-——=b+ = b —b+V b
TV [ eB.  2meB - T mEB ' Viieq

A FLR corrected particle continuity equation is obtained immediately.
on+V-I'=0
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Summary

We have derived an explicit push-forward representations of
particle flux with FLR terms including the polarization drift term
from the pure push-forward abstract representation using only the
lowest order solution of S, 51(1), in the standard electrostatic
gyrokinetic model.

Belova’s result, which was derived from the conventional

representation with 51(2), S, as well as 51(1), has been recovered
from our result through a vector relation and neglecting small
terms.

We have also derived the other form of representation and then
the FLR corrected continuity equation retaining the time derivative
term of V, p, by transforming the gyrofluid moments to the particle
fluid moments.

Electromagnetic generalization in the p, formulation [Hahm-Lee-
Brizard 1988] is easier for the pure push-forward representation.
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