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Gyrokine-c	Simula-on	Code:	GKV	
�  Nonlinear	gyrokinetic	equation	for	perturbed	gyrocenter	
distribution	δf	is	numerically	solved	on	the	five-dimensional	
phase	space,	(x,	y,	z,	v||,	µ)	

�  Strong	anisotropy	of	fluctuations	is	accurately	resolved	by	
using	curvilinear	coordinates	along	field	lines.	

�  High	resolution	of	5-D	phase	space.	
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(GKV:	Watanabe	&	Sugama	NF	2006)	



Numerical	difficul-es	in	mul--
species	gyrokine-c	simula-on	
� Multi-species	gyrokinetic	(GK)	simulation	suffers	from	
separation	of	typical	time	scales	of	ions	and	electrons	
�  Fast	electron	motion	along	field	lines	restricts	the	time-step	
size	of	explicit	schemes.			(say,	Δt<1.e-4 R0/Cs for LHD)	

�  It	also	leads	to	slow	convergence	of	recursive	solvers	in	
implicit	time	integrations.	

�  Semi-Lagrangian	(SL)	method	can	trace	drift	motion	of	
particles	with	time	steps	beyond	the	CFL	condition.	
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Semi-Lagrangian	scheme	applied	to	
GKV	–	Early	work				(Maeyama	et	al	CPC	2012)	

�  Semi-Lagrangian	scheme	applied	to	GKV	code	could	
successfully	reduce	the	computational	costs.	
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�  Linear	ITG	benchmark	with	adiabatic	
electrons;	Δt=0.005 for	RKG	but	Δt=0.1 
for	Semi-Lagrangian	+	iRK	

�  Nonlinear	benchmark	for	the	ITG	
turbulence	was	also	successful.	



Numerical	difficul-es	in	mul--
species	gyrokine-c	simula-on	
� Multi-species	gyrokinetic	(GK)	simulation	suffers	from	
separation	of	typical	time	scales	of	ions	and	electrons	
�  Fast	electron	motion	along	field	lines	restricts	the	time-step	
size	of	explicit	schemes.			(say,	Δt<1.e-4 R0/Cs for LHD)	

�  It	also	leads	to	slow	convergence	of	recursive	solvers	in	
implicit	time	integrations.	

�  Semi-Lagrangian	(SL)	method	can	trace	drift	motion	of	
particles	with	time	steps	beyond	the	CFL	condition.	

�  But,	SL	for	GK	equation	is	often	numerically	unstable	to	
electromagnetic	fluctuations,	because	the	wave	propagation	
direction	may	be	different	from	those	of	particle	motions.	

=>	We	need	new	numerical	techniques	for	multi-species	GK.	
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Revisi-ng	the	driL	kine-c	equa-on	
�  Let us consider the linearized DK equation for electrons!

�  0th , 1st, and 2nd order moments are given by!

�  Quasi-neutrality and the Ampere’s law!

�  The above equations describe the parallel electron motion 
and the kinetic Alfven waves!
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Equa-ons	of	low-order	moments	
and	moment-extracted	kine-c	eq.	
�  The 0th and 1st order moment equations are given by !

�  Distribution function he where the low-order moments 
are extracted.!

�  The remnant drift kinetic equation for he !

   with a constraint of !
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New	formula-on	exactly	describes	
the	kine-c	Alfven	wave	
�  Numerical	solution	of	the	DK	equation	with	the	moment	
extracted	formulation	successfully	describes	the	KAWs.	

	
�  Ion	polarization	is	included	in	the	form	of	a	long	wave-length	
limit.	
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Applica-on	of	an	implicit	solver	to	
the	fluid	equa-ons	
�  Adams-Bashforth	+	Crank-Nicolson	
�  An	explicit	integrator	is	used	for	the	temperature	gradient	
�  Stable	solutions	can	be	obtained	even	with	a	larger	time	step	
size	than	that	given	by	the	Courant	number	for	ωH.	

�  Explicit	integrator	is	unstable	for	kperpρs < 0.12, while the implicit 
can be successfully applied to kperpρs < 0.01.!
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Summary	
� We	developed	a	numerical	scheme	for	handling	the	fast	
electron	motion	in	gyrokinetic	simulation.	
�  Solve	a	kinetic	equation,	of	which	0th	and	1st	order	
moments	are	extracted,	and	the	electron	fluid	equations.	

�  Wave	propagation	can	be	solved	implicitly,	while	an	explicit	
scheme	is	applied	to	the	kinetic	equation.		

�  Modified Maxwellian distribution of which 0th and 2nd 
order moments exactly satisfy the identities.!

�  Application of the semi-Lagrangian scheme has also been 
tested, demonstrating its numerical stability and efficiency, 
where kinetic and fluid equations can be solved explicitly 
with a time step size beyond the CFL limit.!
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