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Gyrokinetic simulation method

with a moment closure
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Introduction
e GKV code and its numerical difficulties
Drift kinetic equation and moment closure
e Moment extracted formulation
* Application of the implicit scheme for the kinetic Alfven
wave propagation
A numerical remark on the DK simulation

e Maxwellian distribution on discretized grids in the finite
velocity space

Application of the semi-Lagrangian scheme for a finite 8
plasma

Summary
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Gyrokinetic Simulation Code: GKV

Nonlinear gyrokinetic equation for perturbed gyrocenter
distribution Jfis numerically solved on the five-dimensional
phase space, (x, Y, z, Vi), uw)
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e Strong anisotropy of fluctuations is accurately resolved by
using curvilinear coordinates along field lines.

e High resolution of 5-D phase space.
(GKV: Watanabe & Sugama NF 2006)
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_ Numerical difficulties in multi=—

species gyrokinetic simulation

Multi-species gyrokinetic (GK) simulation suffers from
separation of typical time scales of ions and electrons

e Fast electron motion along field lines restricts the time-step
size of explicit schemes. (say, At<l.e-4 R,/C, for LHD)

e [t also leads to slow convergence of recursive solvers in
implicit time integrations.
e Semi-Lagrangian (SL) method can trace drift motion of
particles with time steps beyond the CFL condition.
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~ Semi-Lagrangian scheme applied to
GKV - Ea rly WOrk (Maeyama et al CPC 2012)

* Semi-Lagrangian scheme applied to GKV code could
successfully reduce the computational costs.
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e Linear ITG benchmark with adiabatic = ® Nonlinear benchmark for the ITG
electrons; At=0.005 for RKG but At=0.1 turbulence was also successful.
for Semi-Lagrangian + iRK
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Numerical difficutties in multi=
species gyrokinetic simulation

Multi-species gyrokinetic (GK) simulation suffers from
separation of typical time scales of ions and electrons

e Fast electron motion along field lines restricts the time-step
size of explicit schemes. (say, At<l.e-4 R,/C, for LHD)

e [t also leads to slow convergence of recursive solvers in
implicit time integrations.

e Semi-Lagrangian (SL) method can trace drift motion of
particles with time steps beyond the CFL condition.

e But, SL for GK equation is often numerically unstable to
electromagnetic fluctuations, because the wave propagation
direction may be different from those of particle motions.

=> We need new numerical techniques for multi-species GK.
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Drift kinetic equation and
moment closure
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Revisiting the drift kinetic equation
Let us consider the linearized DK equation for electrons
0 9 g - (aqb 1 aA”)
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ot gz dz\dz ¢ 0F

Oth, 1st, and 2nd order moments are given by
n,= ffed3v n,U = fv”fed3v nl1,+n,, = mefv”zfecfv

Qua31 -neutrality and the Ampere’s law
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The above equations describe the parallel electron motion

and the kinetic Alfven waves
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" Equations of low-order moments

and moment-extracted kinetic eq.

The Oth and 1st order moment equations are given by
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Distribution function /i, where the low-order moments
are extracted.
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The remnant drift kinetic equation for h,
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with a constraint of f hd’v = f vhdv=0
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- New formulation exactly describes

the kinetic Alfven wave

* Numerical solution of the DK equation with the moment
extracted formulation successfully describes the KAWs.
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* lon polarization is included in the form of a long wave-length
limit.
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waﬁon of-an implicit solverto
~ the fluid equations

Adams-Bashforth + Crank-Nicolson
An explicit integrator is used for the temperature gradient

Stable solutions can be obtained even with a larger time step

size than that given by the Courant number for w.
Be =0, Kperp Ps=002, kjAz=m/32, At=0.0001
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AB and CN for moment egs.
AB (explicit) for moment egs.
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e Explicit integrator is unstable for k.0, < 0.12, while the implicit
can be successfully applied to k.0, < 0.01.
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Summary

We developed a numerical scheme for handling the fast
electron motion in gyrokinetic simulation.

e Solve a kinetic equation, of which Oth and 1st order
moments are extracted, and the electron fluid equations.

e Wave propagation can be solved implicitly, while an explicit
scheme is applied to the kinetic equation.

e Modified Maxwellian distribution of which 0th and 2nd
order moments exactly satisfy the identities.

» Application of the semi-Lagrangian scheme has also been
tested, demonstrating its numerical stability and efficiency,
where kinetic and fluid equations can be solved explicitly
with a time step size beyond the CFL limit.
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