

Gyrokinetic analysis of turbulent transport in helical systems with different magnetic shear

A. Ishizawa Kyoto University

NEXT研究会 2016. 3.10~3.11 京都

Motivation

- Approximate degrees of deviation from axisymmetry

- **3D tokamak** ($\delta B_{n\neq0} / \delta B_{n=0} = 10^{-3}$ to 10^{-2})
- Helical reversed field pinch state ($\delta B_{n\neq0} / \delta B_{n=0} = 0.03$ to 0.05)
- Stellarator ($\delta B_{n\neq0}/\delta B_{n=0} = 0.1$ to 0.3)

D. Spong, APS 2014

Outline

- Introduction
- Large Helical Device (LHD)
- Heliotron J (HJ)
- Comparison
- Summary

	LHD-L	HJ-ST	
R_0/a	6.2	7.3	
$\rho = r/a$	0.68	0.5	
q	1.5	1.7	
$ ho_{*}[10^{-3}]$	2.	4.5	
V_i^*	0.083	3.2	
β [%]	0.2	0.05	
T_e/T_i	0.96	1.3	
R_0/L_n	2.7	9.3	
R_0/L_{Ti}	8.7	13.	
R_0/L_{Te}	9.1	17.	
ŝ	1.2	0.023	
$D_{ m well}$	-0.01	0.74	3

LHD discharge #88343

1.833s

2.233s

0.5

ρ

- B=2.75T, R=3.6m (shifted to 3.75m)
- Low-Ti phase: Ti=1.6keV t=1.8s ${}^{\bullet}$
- High-Ti phase: Ti=3.9keV t=2.2s •
 - Beta(r/a=0.65)=0.3%

(a)

1

200

) Thomson 50

50

(keV

0

0

- Collision: 1/nu

l.840s

2.240s

1.833s

2.233s

ρ

0.5

 $n_{e}(x10^{19}m^{-3})$ FIR Int.

0.5

0

0

Tanaka, PFR 2010

Linear analysis of LHD

- Ion temperature gradient (ITG) modes are unstable.
- Kinetic electron effects enhance the instability.

ITG and ETG modes are unstable. lacksquare

6

Turbulent energy flux of LHD

Ion and electron energy fluxes due to turbulence, Qi and Qe.

- The transition of the energy flux from the low-Ti phase (t=1.8, Ti=1.6keV) to the high-Ti phase (t=2.2s, Ti=3.9keV) in the experiment is reproduced.
- There is no short-fall problem, which suffers the GK analysis of some tokamaks.

Prediction of profile by flux matching

Temperature gradient length L_T : $L_{T \exp}$: Experimental observation of LT Q_s : Heat flux of "s" species $Q_s(L_{Texp})$: Experimental observation of Qs

The predicted temperature gradient length deviates from experimental observation about 20%. 8

Turbulent particle flux 2 t=1.8 Γ Turb t=2 2 F Turb 1.5 t=1.8 [neo-classical High-Ti; Electron root t=2.2 Γneo-classical· $\Gamma = \Gamma_{neo-classical} + \Gamma_{turbulence}$ Low-Ti; Ion root High-Ti -2 0.2 0.3 0.4 0.8 0.9 0.5 0.6 0.7 Minor radius p

• The turbulent particle flux directs to the magnetic axis, and its direction is opposite to the neo-classical particle flux.

Simulation results

- The ITG mode is unstable
 - The LHD is the inner shifted configuration, so it is magnetic hill with a moderate shear.
 - The HJ is magnetic well with a very weak shear.
 - The LHD has an advantage compared with HJ from the linear aspect of drift wave instability.

	LHD-L	HJ-ST
R_0/a	6.2	7.3
$\rho = r/a$	0.68	0.5
q	1.5	1.7
$ ho_{*}[10^{-3}]$	2.	4.5
v_i^*	0.083	3.2
β [%]	0.2	0.05
T_e/T_i	0.96	1.3
R_0/L_n	2.7	9.3
R_0/L_{Ti}	8.7	13.
R_0/L_{Te}	9.1	17.
ŝ	1.2	0.023
$D_{ m well}$	-0.01	0.74
Instability	ITG	ITG
$\gamma \left[v_{Ti}/R_0 ight]$	0.27	0.4
$R_0/L_T - R_0/L_{T \text{crit}}$	2.6	5.2
$\chi_i \left[v_{Ti} \rho_{Ti}^2 / R_0 \right]$	11.	5.9
$\chi_e \left[v_{Ti} ho_{Ti}^2 / R_0 ight]$	4.8	2.4
$E_{\rm ZF}/(E_{\rm ZF}+E_{\rm ITG})$	0.14	0.72

11

Comparisons in (s_hat, Dwell) space

- The stabilizing effect of the magnetic shear is confirmed by the lacksquarereduction of the growth rate by increasing the shear.
- The neoclassical optimization improves turbulent transport in HJ. ۲
- Weak magnetic shear of HJ does not lead to high turbulent lacksquaretransport because of nonlinear interactions including zonal flow production.

Summary

- Comparisons of turbulent transport in helical systems including the LHD and the Heliotron J
- LHD analysis
 - The simulations reproduce the temperature gradients before and after the additional NBI within 20% error.
 - There is no short-fall problem.
- HJ analysis
 - The neoclassical optimization (high-toroidal ripple) suppresses the turbulent heat transport.
- Comparison reveals that the regulation of turbulence by zonal flows is more efficient in HJ which has very weak magnetic shear.