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• Small-scale effects on RT instability 
 Local analysis in the short wavelength limit 
 Two-fluid and Finite Larmor Radius (FLR) stabilization of RT instability 

— K.V Roberts and J.B. Taylor, PRL 8, 197 (1962) 
• Low-beta, isothermal 
• Complete stabilization due to ion FLR and Hall effect for short  

wavelength perturbation 
— P. Zhu, D.D. Schnack et al., PRL 101, 085005 (2008) 

• Absence of complete FLR stabilization for finite beta plasma with non-
uniform temperature 

• Confirmed the extended-MHD simulation results for fusion plasmas 

 IDG (ion density gradient) mode [P.W. Xi et al., Nucl. Fusion 53, 113020 
(2013)] 

• Finite beta 
• Unstable mode appears due to density gradient in two-fluid model 
• Completely stabilized by adding gyroviscosity 



• Tearing mode instability in two-fluid MHD model 
 Drift tearing instability 

• Ion FLR effects on tearing mode instability 
[B. Coppi, Phys. Fluids 7, 1501 (1964)] 

• Gyroviscosity is added to two-fluid MHD 
• Rotation of magnetic islands due to diamagnetic drifts in fusion plasmas 

was observed. 
 Contributions of heat flux cannot be neglected at low collisionality 

• We have derived eigenmode equations for tearing instability in slab 
geometry including effects of parallel heat flux in the gyroviscous tensor. 

 Benchmark test with theory of two-fluid tearing mode 
• Slab [Ahedo and Ramos (2009)] and cylindrical [Ramos, APS-DPP 2013] 

equilibrium 
 

 Goto, Miura, Ito, Sato and Hatori [PFR 9, 140376 (2014), PoP 22, 032115 (2015)] 
• RT (interchange g mode), FLR or two fluid, finite beta, non-const. T, non-

uniform magnetic field 
• Strong stabilization occurs when both of FLR and two-fluid effects are 

included. 
• Stability analysis for more general conditions is needed for comparison with 

extended MHD simulation results. 
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Extended MHD equations for RT instability 
• Extended MHD equations 
  [P. Zhu, D. D. Schnack et al., PRL 101, 085005 (2008)] 

 Ion gyroviscosity, Hall current and electron pressure are 
added into MHD equations. 



Ion FLR effect （δ=1）：gyroviscosity 
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Two-fluid effect （ε =1）：Hall current and electron pressure 
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  Linear eigenmode equation: 
( ) ( )1 1 exp ,f f x iky i tω= −

 Perturbation: 
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  Local (WKB) approximation 

( )0; , 0D kω =
Local dispersion relation at x=0  
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• Linear analysis 



Equilibrium 
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Comparison of growth rates for different fluid  models 
0.01β = 0.1β = 0.3β =

( )2 1.0p =

- Strong FLR stabilization occurs for high beta 
- Two-fluid effect is stabilizing for low beta but destabilizing for high beta 
- Coupling of FLR and two-fluid effects indicates strong stabilization for low 

beta but is less stabilizing for large wavenumber modes than the FLR effect 
- For FLR+two-fluid case, RT is coupled with electron drift wave  



Numerical analysis for two-fluid tearing mode in a slab 

Boundary condition: 
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Summary 

• Complete FLR stabilization disappears if  beta value and 
pressuer gradient are small for equilibria with non-uniform 
magnetic field. 

• Effects of FLR and two fluid on the growth rate and real 
frequency 
 Growth rate indicates complicated parameter dependence 

• Growth rates for long wavelength modes for all cases and 
short wave for FLR case of eigenmode analysis agree with 
those of simulation results. 

Tearing mode 
• The eigenmode equations have been solved numerically for 

two-fluid tearing mode in a slab and a cylinder for benchmark 
with theory in a wide range of beta and ion skin depth. 

• The effects of gyroviscosity with parallel heat flux based on 
the results for the parameter dependence of two-fluid tearing 
instability will be examined 

RT mode 
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