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The effect of magnetic shaping on zonal flow damping
in a toroidal global gyrokinetic simulation
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Global gyrokinetic (GK) global simulation is considered to be an essential tool to understand micro-scale instability and associated turbulent transport phenomena including the profile stiffness / resilience and transport barrier formation.
While many GK codes already exist, most of them rely on constraining hypotheses such as a circular section (despite the D-shape of actual tokamak such as ITER) to simplify the equation systems.

Our 5D full-f toroidal GK Vlasov simulation code, GKNET, has been upgraded, with the addition to its real space field solver of a new high accuracy ZF solver, based on a diagonalisation of the ZF equation. In addition to being more
rigorous near the center of the poloidal plane compared to those local approximations, a solver based, this method allows for accurate results on low resolution grids. This upgraded code was used to study GAM damping in elliptic and
both positive and negative D-shaped configurations. While the influence of elongation had been partially studied, we introduce new results on the influence of triangularity on the damping rate, showing an assymmetry allowing negative
triangularities to damp the ZF faster.
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Gyrokinetics formalism
The Vlasov-Poisson system is expressed as:{

∂f
∂t + v⃗ · ∂f∂x⃗ + q

m(−∇Φ + v⃗ × B⃗) · ∂f∂v⃗ = 0 (Vlasov equation)

∆Φ = −qe
ϵ0

∫
(Fi − Fe)d

3v (Poisson equation)

where f is the distribution function describing the plasma’s configuration in the 6-dimensional phase space and
Φ is the electric potential.

The particles’ helicoidal trajectories around the magnetic field lines can be
described through the position of the center of this gyration R⃗, the parallel
speed v//, the magnetic moment µ = v2⊥/(2B) that defines gyration speed
and radius and the angle α of the gyration:

(x⃗, vx, vy, vz) 7→ (R⃗, v//, µ, α)

As the gyration radius is very small compared to the characteristic scale of the equilibrium structures, the variables
can be averaged in α (over these circles) reducing the number of dimensions to 5. However, this transformation
yields in the Poisson equation such gyro-averaged terms whose computation can be difficult.

Derivation of the model
The gyrokinetic Vlasov equation which describes the evolution of the guiding center distribution fs of the specie
concerned is derived using Hamiltonian mechanics as:

∂fs
∂t

+ Ṙ · ∂fs
∂R

+ v̇//
∂fs
∂v//

= 0 where

Ṙ = v//b +
b

msB∗
//
×

(
es∇ ⟨Φ⟩x +

msv
2
//+µB

B ∇B +
v2//
B (∇×B)× b

)
v̇// =

−1
msB∗

//
B∗ · (es∇ ⟨Φ⟩x + µ∇B)

(1)
The electrostatic potential Φ and is given by the GK quasi-neutrality condition reads:

ei
Ti

(Φ− ⟨⟨Φ⟩⟩) + e

Te

(
Φ− Φ

)
=

m2
i

n0

∫
B∗ ⟨fi − f0⟩R dv//dµ (2)

and where ⟨·⟩x and ⟨·⟩R denotes the simple gyro-averaging (depending on the variable’s initial configuration
space) and the term ⟨⟨Φ⟩⟩ is the double averaging, defnied as:

⟨⟨Φ⟩⟩(x) = 1

2π

∫
⟨Φ⟩x fMδ(R + ρ− x)dRdαdµ

with fM a Maxwellian in v⊥, slowly varying in R such f0’s dependence is of the form f0(R, 0, v//)fM (R, µ) (i.e.

a Gaussian distribution of variance the thermal velocity vth).

The flux averaged term Φ plays an important role in the damping of zonal flow. The Zonal Flow equation is
obtained by computing the flux average of the field equation eq. 2:

Φ− ⟨⟨Φ⟩⟩ = Ti
ei

m2
i

n0

∫
B∗ ⟨fi − f0⟩ dv//dµ. (3)
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Real space gyro-averagings
Simple and double averagings in real space

Rather than a theoretical simplification of its expression, the simple averag-
ing is computed by sampling a given number of points M on circular orbits
(black circle and green points on thetop figure on the right).

The double averaging being the composition of 2 simple averagings, the
averaging is here performed over M2 ”secondary points” sampled on ”sec-
ondary” circular orbits centered on each ”primary point” (the blue and red
points on the grey circles on the same figure). The integration over v⊥ (i.e.
in radius), is computed as a weighted sum of double averagings for given
radii, the weights and radii being computed numerically to minimise the
error.

The error of the 2 or 3-D interpolations and of the sampling on the circles can be estimated theoretically. In
the latter case, for a given mode k⊥ in Catesian coordinates, using M points will yield an error of the order of
2J2M (k⊥v⊥)/J0(k⊥v⊥) for M odd and 2JM (k⊥v⊥)/J0(k⊥v⊥) for M even.

Resolution of the ZF equation by diagonalisation
To study the ZF equation eq. 3, expanding an arbitrary flux function Ψ around the magnetic axis, we can derive
the parametrisation of the D-shaped magnetic flux surfaces:{

R = R0 + α cos(θ)− α2

a0
(∆ + δ sin(θ)2) +O(ϵ3)

Z = ακ sin(θ) +O(ϵ3)
(4)

where κ is the elongation, δ is the triangularity, ∆ is the Shafranov shift and α a linear labelling of flux surfaces
(simply equivalent to the radius in circular cases) ranging from 0 to a0. Using these coordinates, we can establish
the equations verified by eigenfunctions:

λfλ(α) = ⟨⟨fλ⟩⟩(α) =
1

Sα

∫∫
Rα⟨⟨fλ⟩⟩dθdφ ⇒ (1 +G1,2α

2)f ′′λ +
1 +G2,2α

2

α
f ′λ + ω2λfλ = 0 (5)

where the coefficients G1,2 and G2,2 are O((ϵ+ δ +∆)2). The neglection of the first order derivative leads to a
usual Fourier solution but is inaccurate near the center of the poloidal section. The solutions read:

fλ(α) ∝ (1− C2α
2)J0(ωλα) +

α

ωλ,0
(2C2 + C1α

2)J1(ωλα)

{
C1 = G1,2/6

C2 = (3G2,2 − 5G1,2)/12
(6)

along with the eigenvalues λk ≃ a20
j20,k

1+κ2

2κ2 for the ZF equation eq. 3, where j0,k being the k-th zero of J0. Using

this result, the ZF equation is fianlly solved by projecting the RHS onto an eigenbasis:

Φ− ⟨⟨Φ⟩⟩ =
∑

ckfλk
⇒ Φ =

∑
ckλkfλk

(7)

As the eingenvalue decrease very rapidly, eigenbases can be restricted to the first few eigenfunctions, resulting
in very small linear equation systems to solve.
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Influence of the elongation and triangularity on the ZF damping
Collisionless ZF damping simulations are performed in a homogeneous
plasma with Ln = LT = ∞ in which we follow the evolution of the ampli-
tude of an initial pertubation of the form δf = 10−3 sin

(π
2(1− r/a)

)
. The

3 parameters of interest are the residual ZF, the oscillation frequency ω and
the damping rate γ (see figure below).

Time evolution of the ZF for q = 2 for the circular case (blue) and the
negative D-shape case κ = 1.6, δ = −0.3 (green).

While the circular case has been extensively studied, it is not the case of the
elliptic or D-shaped case, either theoretically or numerically.

The simulations presented on the right have been performed for ϵ = 0.1 and
q = 2 on a grid (NR, NZ, Nφ, Nv//, Nµ) = (64/κ, 64, 1, 128, 8).

Elongation κ is found to enhance the convergence while increasing the limit.

These results mostly corroborate the theoretical result on the residual level
by Y. Xiao (Phys. Plasmas, 13, 082307 (2006)) and numerical ones by P.
Angelino (Phys. Plasmas,15, 062306 (2008)).

In addition, a theoretical paper by Z. Gao (Phys. Plasmas, 17, 092503
(2010)) also suggests that the damping rate should increase with elongation,
although the formula proposed can only be used for tendencies and not for
numerical comparaison.

Triangularity is found to be of little effect on the residual ZF and oscillation
frequency. Here again, the influence of triangularity is found to match the
theoretical results by Y. Xiao.

However tiangularity seems to strongly enhance ZF damping, with an as-
symmetry favouring negative triangularities.
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Summary and conclusion
Our full-f toroidal GK Vlasov code, GKNET, has been upgraded, by introducing to its real space field solver of
a new ZF solver which can accurately solve the ZF equation based on a diagonalisation of the ZF equation. This
new solver allows for accurate numerical results on very low resolution grids.

With this new solver, GAM damping tests were performed to study the influence of the shape of the magnetic
field on the residual ZF level, oscillation frequency and damping rate. Results on the influence of the elongation
κ of the section confirm numerical and theoretical works results found in the literature. Additionally, while the
triangularity is found to be of litle influence on the residual ZF and oscillation frequency, it is found to strongly
enhance the damping of the ZF, with an assymmetry favouring negative triangularities over positive ones.
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Future plans
As the ZF soler was developed with the aim of studying GAM damping, it requires a constant temperature
over the section while this condition was not necessary in the pre-existing code. This study will be continued
to attempt to generalise the diagonalisation of the ZF equation and if possible towards theoretical formulas for
the GAM damping parameters based on this approach.

Later GKNET will also be used to study the shaping effects on linear ITG/TEM growth rates and in particular
the effects of negative-D shapes.


