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Introduction�

   Fast ions in fusion plasmas

•  Alpha particles produced by D-T fusion reaction (E=3.5MeV)

•  Fast ions produced by NBI and ICRF heating (E~100keV-1MeV)

•  Primary heat source of plasma

•  Potent heat load to the divertor => should be well-confined
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   Orbit of fast ions in toroidal plasmas

•  Deviation from the magnetic surface is relatively large.

•  Hardly trapped in the potential wells of the level of thermal energy


! fast ions tend to be non-uniformly distributed over a magnetic surface.

! may produce electrostatic (ES) potential varying on magnetic surface

! Such fast-ion-induced ES potentials and their effect on plasma 

performance has not been investigated.


   Objectives of this study

•  We evaluate ES potentials produced by fast-ion non-uniformity in toroidal 

plasmas, on the basis of numerical simulations.

•  We also consider the presence of magnetic islands, which may lead to 

further localization of passing fast ions.

•  We investigate the effect of the ES potentials on fast ion confinement.�
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Typical guiding-center orbit of 
co-passing and counter-passing 
fast ions in a tokamak plasma.�

Energy dependence of guiding-center 
orbit of co-passing ions�



Fast ion model�

   GNET (Global NEoclassical Transport) code


•  We solve above equation for ff in 5D phase space, using the GNET code 
[Murakami 2006, Nucl. Fusion] based on Monte Carlo technique.


•  Guiding-center orbit is followed in Boozer coordinates with 6th-order Runge-
Kutta-Hutta method.


•  Pitch-angle and energy scatterings during energy slowing down

•  Magnetic field and plasma geometry from VMEC

•  Extended to treat ES potentials with arbitrary Fourier modes.
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ff : fast-ion distribution function, v|| : parallel velocity , vD : drift velocity,   
C : Linear Coulomb collision operator�Lparticle��particle loss term� 
Sbeam ��fast-ion source term�by HFREYA��



Electrostatic potential model�

   Adiabatic response of electrons

•  ES force is assumed to be balanced by pressure gradient force in parallel 

direction (Boltzmann relation in parallel direction).





•  Equilibrium- and perturbed parts of electron density:


•  Te and ni0 are assumed to be constant along each field lines.

•  <nf>: the flux-tube averaged fast-ion density (by field-line tracing)
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Iterative simulation�

   Data flow in the iteration

•  We have extended GNET to ES potentials with arbitrary Fourier mode.

•  Self-consistent fast-ion distributions and ES potentials can be obtained by 

the following iteration (background ion is assumed rest).�
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Simulation conditions�

   Assumed equilibrium, plasma profiles, and fast-ion source

•  We consider a tokamak plasma with a circular cross-section.

•  Electron density and electron- and ion temperatures at the center are 

ne=3x1019m-3 and Te=Ti=3 keV.

•  A co-current NBI injected with E=80 keV is assumed. (no sub-components)

•  NB absorption power is set to 5 MW.�
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Simulation results I�

•  Fast-ion density varies over magnetic surfaces (white lines) with the 
dominant poloidal mode number of 1 due to toroidicity.


•  ES potential ~ 20V is produced by the non-uniformity of fast ions.�
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Fast-ion density� ES potential�



   Result of iterative simulation

•  In the absence of magnetic islands, no clear change was found before and 

after a single iteration.
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Fast ion localization by magnetic islands�

   NBI beam pressure with magnetic island in the LHD
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•  Previously, we performed NBI heating 
simulation of LHD (Large Helical Device) 
plasma with magnetic islands by RMP 
(Resonant Magnetic Perturbation). 
(ITC25, 2015)


•  We have found that the tangentially-
injected fast beam ions form highly-
localized beam ion pressure profiles 
near the resonant magnetic surface.


•  Next, we investigate ES potentials 
produced by fast ions in presence of 
magnetic islands.�
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Magnetic island model�

   Perturbation model for magnetic island

•  We use a well-known analytic form of magnetic perturbation, δB,  producing 

magnetic island at resonant rational surface.
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k=16�

,� ,�





•  We consider a static (m,n)=(4,3) mode whose resonant surface locates at  

r/a~0.61.�
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Fast ion density with magnetic island�

•  Equilibrium magnetic surfaces are distorted and torn into magnetic island at 
the resonant rational surface by the superimposed magnetic perturbation.


•  Drift island structure appears in the fast-ion density profile in the presence of 
magnetic island.�
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Without magnetic island� With magnetic island�



ES potentials with magnetic island�
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•  Potential wells are formed along the axis of drift islands.

•  ExB convection cells across magnetic surfaces are formed.�

ES potentials� Radial ExB drift�



Effect on fast ion transport�

•  We performed several iterative simulation of NBI fast ions and ES potentials.

•  The energy loss fraction of fast ions slightly (<1%) increased and the fast ion 

density decreased in the central region after 4 iterations.

•  The effect on fast ion transport is very small.�
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Effect on thermal ion transport�

•  We distributed 5000 isotropic and mono-energetic test particles initially at 
the resonant surface.


•  We followed the test particles with three different energy (500eV, 1keV, and 
3keV) for 10 ms and investigated the effect of fast-ion-induced ES potentials 
on spatial diffusion in presence of magnetic islands.
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•  χ= 4θ�3φ%
•  In the absence of ES potentials, 

ions tends to remain on the 
resonant magnetic surface.


•  We can see clear enhancement 
of diffusion due to ES potentials 
especially near the X point for 
each energies.�
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Summary�

•  We have evaluated electrostatic (ES) potentials produced by non-uniformity 
of fast-ion density along field lines in toroidal plasmas, using GNET code.


•  In a tokamak plasma, an ES potential ~ 30 V with the dominant toroidal 
mode number of 1 is formed due to toroidicity.


•  Magnetic islands have strong localization effect on fast ions

•  The effect of ES potential in the presence of magnetic island


•  On fast ions: very small (slight decrease in the central density)

•  On thermal ions: clear change in the spatial diffusion was found.


   Future task

•  Detailed study on the particle diffusion (evaluation of diffusion coefficient)

•  Dependency of fast-ion-induced ES potentials on the island phase

•  ES potentials formation by NBI fast ions in the LHD and its effect on particle 

transport

•  Diffusion/confinement of fast ions in low-frequency, rotating magnetic island 

of NTM
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