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| Introduction

Fast ions In fusion plasmas
« Alpha particles produced by D-T fusion reaction (E=3.5MeV)

« Fast ions produced by NBI and ICRF heating (E~100keV-1MeV)
» Primary heat source of plasma
« Potent heat load to the divertor => should be well-confined

r s ot

! ~ NN

co-passing counter-passing \

/ / ~ -100keV
agnetic surface - = 1MeV

\ \M/

/ / e _ - 10keV

N/




Typical guiding-center orbit of Energy dependence of guiding-center
co-passing and counter-passing orbit of co-passing ions
fast ions in a tokamak plasma.

Orbit of fast ions in toroidal plasmas

« Deviation from the magnetic surface is relatively large.

« Hardly trapped in the potential wells of the level of thermal energy
» fast ions tend to be non-uniformly distributed over a magnetic surface.
» may produce electrostatic (ES) potential varying on magnetic surface

» Such fast-ion-induced ES potentials and their effect on plasma
performance has not been investigated.

Objectives of this study

« We evaluate ES potentials produced by fast-ion non-uniformity in toroidal
plasmas, on the basis of numerical simulations.

« We also consider the presence of magnetic islands, which may lead to
further localization of passing fast ions.

* We investigate the effect of the ES potentials on fast ion confinement.
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| Fast ion model

GNET (Global NEoclassical Transport) code
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J¢ + fast-ion distribution function, v : parallel velocity , v, : drift velocity,

C : Linear Coulomb collision operator, L,,: particle loss term,

Speam - fast-ion source term (by HFREYA)

» We solve above equation for f; in 5D phase space, using the GNET code
[Murakami 2006, Nucl. Fusion] based on Monte Carlo technique.

« Guiding-center orbit is followed in Boozer coordinates with 6t"-order Runge-
Kutta-Hutta method.

« Pitch-angle and energy scatterings during energy slowing down
« Magnetic field and plasma geometry from VMEC
« Extended to treat ES potentials with arbitrary Fourier modes.
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I Electrostatic potential model

Adiabatic response of electrons

« ES force is assumed to be balanced by pressure gradient force in parallel
direction (Boltzmann relation in parallel direction).
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» Equilibrium- and perturbed parts of electron density:
neo = Nio + (Ng)
dne = ng — (ng),

« T, and n,, are assumed to be constant along each field lines.
+ <ng>: the flux-tube averaged fast-ion density (by field-line tracing)
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| Iterative simulation

Data flow in the iteration
 We have extended GNET to ES potentials with arbitrary Fourier mode.

« Self-consistent fast-ion distributions and ES potentials can be obtained by
the following iteration (background ion is assumed rest).

ndy,0,¢) e
GNET Fleldtllne
tracing
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oD, () <n>(1,0,¢)
Fourier 0P(y,0,9) Boltzmann
analysis relation
Extract dominant modes ES potential distribution
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| Simulation conditions

Assumed equilibrium, plasma profiles, and fast-ion source
« We consider a tokamak plasma with a circular cross-section.

» Electron density and electron- and ion temperatures at the center are

n,=3x10""m-2 and T =T =3 keV.
« A co-current NBI injected with E=80 keV is assumed. (no sub-components)
 NB absorption power is set to 5 MW.

0.6 Major radius

0.4 | Nt Minor radius

0.2 | N Plasma volume
E g0l Magnetic field strength
N 0 | W {/% ne(0)

* o Te(0), Ti(0)
047 | Fast-ion source
06 Fast-ion energy
34 3.6 3.8 40 42 4.4

2016/03/10-11

R [m]

21st NEXT Workshop @ Kyoto Terrsa, H. Yamaguchi and S. Murakami

3.9

2.0

0.58

24

3

3 x 1019
3

cc MBI
80

3-8 88

keV

keV




| Simulation results |
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« Fast-ion density varies over magnetic surfaces (white lines) with the
dominant poloidal mode number of 1 due to toroidicity.

« ES potential ~ 20V is produced by the non-uniformity of fast ions.
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Result of iterative simulation

* In the absence of magnetic islands, no clear change was found before and
after a single iteration.
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| Fast ion localization by magnetic islands

NBI beam pressure with magnetic island in the LHD
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Previously, we performed NBI heating
simulation of LHD (Large Helical Device)
plasma with magnetic islands by RMP

(Resonant Magnetic Perturbation).
(ITC25, 2015)

We have found that the tangentially-
injected fast beam ions form highly-
localized beam ion pressure profiles
near the resonant magnetic surface.

Next, we investigate ES potentials
produced by fast ions in presence of
magnetic islands.
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I Magnetic island model

Perturbation model for magnetic island

* We use a well-known analytic form of magnetic perturbation, 6B, producing
magnetic island at resonant rational surface.
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« We consider a static (m,n)=(4,3) mode whose resonant surface locates at
r/a~0.61.
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I Fast ion density with magnetic island
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« Equilibrium magnetic surfaces are distorted and torn into magnetic island at

the resonant rational surface by the superimposed magnetic perturbation.

 Drift island structure appears in the fast-ion density profile in the presence of
magnetic island.
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1 ES potentials with magnetic island
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» Potential wells are formed along the axis of drift islands.
« EXB convection cells across magnetic surfaces are formed.
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| Effect on fast ion transport
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« We performed several iterative simulation of NBI fast ions and ES potentials.

« The energy loss fraction of fast ions slightly (<1%) increased and the fast ion
density decreased in the central region after 4 iterations.

» The effect on fast ion transport is very small.
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| Effect on thermal ion transport

« We distributed 5000 isotropic and mono-energetic test particles initially at

the resonant surface.

« We followed the test particles with three different energy (500eV, 1keV, and
3keV) for 10 ms and investigated the effect of fast-ion-induced ES potentials
on spatial diffusion in presence of magnetic islands.

Initial distribution
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In the absence of ES potentials,
jons tends to remain on the
resonant magnetic surface.

We can see clear enhancement
of diffusion due to ES potentials
especially near the X point for
each energies.
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I Summary

« We have evaluated electrostatic (ES) potentials produced by non-uniformity
of fast-ion density along field lines in toroidal plasmas, using GNET code.

* In atokamak plasma, an ES potential ~ 30 V with the dominant toroidal
mode number of 1 is formed due to toroidicity.

« Magnetic islands have strong localization effect on fast ions
» The effect of ES potential in the presence of magnetic island
* On fast ions: very small (slight decrease in the central density)
* On thermal ions: clear change in the spatial diffusion was found.

Future task
» Detailed study on the particle diffusion (evaluation of diffusion coefficient)
« Dependency of fast-ion-induced ES potentials on the island phase

« ES potentials formation by NBI fast ions in the LHD and its effect on particle
transport

 Diffusion/confinement of fast ions in low-frequency, rotating magnetic island
of NTM
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