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Background and Motivation

‣ A numerical integration algorithm with arbitrarily high order has been developed for 
Hamiltonian systems, especially for a charged particle motion recently:

- Explicit method

- Non-canonical variables are used

- Poisson tensor is decomposed

- Extended phase space is introduced for time-dependent EM fields

- Note that the algorithm by exponential operator decomposition was 
developed for separable Hamiltonian in canonical variables

‣ The motivation of this study is to extend the algorithm to general dynamical 
systems

- with odd number of degrees of freedom

- of which vector field is compressible
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Hamiltonian Mechanics of charged particle in time-dependent EM fields

‣ Let us consider motion of a charged particle in electric and magnetic fields

‣ Hamiltonian is given by

‣ Let us introduce extended phase space, where

‣ Then the Hamilton’s equation can be written as

- Dot denotes derivative with respect to “time” variable

- 1st-3rd components are                 and 

- 4th componens are            and

‣ If we write the vector field as

the formal solution is
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: mass
: charge
: canonical coordinate
: canonical momentum
: electrostatic potential
: vector potential

with
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: energy



Exponential operator decomposition

‣ Since the Hamiltonian is not separable for the canonical variables

‣ Let us introduce non-canonical variables:

Then the Hamiltonian becomes

‣ The evolution equation becomes

‣ We decompose the Poisson tensor as

‣ Then the vector field is decomposed as 
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with

with for            and so on

with
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Exponential operator decomposition (cont’d)

‣ The formal solution is written by exponential operator expressing the time 
advancement:

‣ The exponential operator can be approximated as

- The right hand side (omitting the           terms) means sequential 
operations of

- Each of the decomposed exponential operators can be calculated exactly

‣ This approximation can be used as a 1st-order algorithm for small time 
interval           

- We call this algorithm as 

‣ The 2nd-order algorithm (          ) can be constructed by time-symmetric 
decomposition

‣ By combining several steps of                  nicely, we can construct             
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Extension for general vector fields

‣ The arbitrarily high order of accuracy is achieved because

- time advancement by each exponential operator is performed exactly

- truncation error only arises when we decompose the full exponential 
operator

‣ If we can decompose the vector field of a general dynamical system, where 
each of the decomposed exponential operator can be integrated exactly, we 
may obtain a numerical integration algorithm with arbitrarily high order as in 
the case of the charged particle motion

‣ Two examples are shown in this presentation
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Case 1 Damped oscillator

Case 2 Lorenz model

The vector field is compressible, but the dynamics is regular (no chaos)

The vector field is compressible
The dimension of the phase space is three (odd)
The dynamics can be chaotic



Damped oscillator :  formulation

‣ The governing equations are

‣ The formal solution is

‣ Let us decompose the vector field as

‣ Then the 1st-order approximation of the exponential operator becomes

‣ Each operation of the decomposed exponential operators can be calculated 
exactly as

-        :

-        :

‣ Higher-order algorithms can be constructed by imposing the time-reversal 
symmetry (2nd order) and the recurrence formula (arbitrarily high order)
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Case 1

with and

with and



Damped oscillator :  numerical results

‣ The accuracy of the numerical results is evaluated by comparison of the 
energy with analytic solution:

‣ The theoretical order of accuracy is almost achieved (          for       )
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10-8

10-6

10-4

10-2

100

102

10-3 10-2 10-1 100

〈
E−
E a

n
/ E

an
〉

∆t

G1
S2
S4
S6
S8
S10
RK4

図 1: 数値計算結果のエネルギーEの厳密解のエネルギーEanからのずれの絶対値の相対
誤差の時間平均値 ⟨|E − Ean|/Ean⟩ の時間刻み幅∆t依存性．

2.2 Lorenzモデル
前小節の結果を踏まえ，Lorenzモデルへの適用を行う．これは，奇数次元の 3自由度
であり，また圧縮性のベクトル場をもつ．カオスが出る系なので，次数を上げたことの効
果がどの程度見られるのかも興味深いところである．
Lorenzモデルは以下で与えられる：

Ẋ = −σX + σY, (19)

Ẏ = rX − Y −XZ, (20)

Ż = −bZ +XY. (21)

ベクトル場V を以下のように分割する：

V =VX + VY + VZ , (22)

VX :=

⎛

⎜⎜⎝

−σX + σY

0

0

⎞

⎟⎟⎠ , (23)

VY :=

⎛

⎜⎜⎝

0

rX − Y −XZ

0

⎞

⎟⎟⎠ , (24)

VZ :=

⎛

⎜⎜⎝

0

0

−bZ +XY

⎞

⎟⎟⎠ . (25)
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Lorenz model :  formulation

‣ The Lorenz model is given by

‣ The vector field is decomposed as

‣ Then the 1st-order approximation of the exponential operator becomes

‣ Each operation of the decomposed exponential operators can be calculated 
exactly as

-        : 

-        :

-        :

‣ Higher-order algorithms are similarly constructed
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Case 2

with and



Lorenz model :  numerical results (convergence)

‣ Parameters:             ,           ,            ,                ,                ,

‣   

‣ RK4

‣ RK4 seems to show better convergence property
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Case 2
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        Lorenz model :  numerical results (convergence) : cont’d

‣ Parameters:             ,           ,            ,                ,                ,

‣  

‣ The numerical results by various algorithms start to deviate around
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Case 2
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        Lorenz model :  numerical results (Liapunov exponent)

‣ Parameters:             ,           ,            ,                ,                ,

‣ Since                          , an error of                is amplified to          during                   
to 

‣ We have not clarified the reason yet

‣ Note that numerical results with parameters without chaos well agreed 
among algorithms
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Case 2
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Conclusions

‣ The numerical integration algorithm with arbitrarily high order has been 
extended to general dynamical systems

- odd number of degrees of freedom

- compressible vector field

- although more testing is needed

‣ Numerical results for the damped oscillator showed good convergence property

‣ Convergence property for the Lorenz model (parameters giving chaos) was 
better for the 4th-order Runge-Kutta method

- We have not clarified the reason yet

- Note that the numerical results without chaos well agreed among algorithms
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