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Background and Motivation

» A numerical integration algorithm with arbitrarily high order has been developed for

Hamiltonian systems, especially for a charged particle motion recently:
[M. Furukawa, A. Matsuyama and Y. Ohkawa, Plasma Fusion Res. 11, 1303003 (2016).]

— Explicit method

— Non-canonical variables are used

— Poisson tensor is decomposed

— Extended phase space is introduced for time-dependent EM fields

Note that the algorithm by exponential operator decomposition was
developed for separable Hamiltonian in canonical variables

[Masuo Suzuki, Phys. Lett. A (1990, 1992).]
[Haruo Yoshida, Phys. Lett. A (1990).]

» The motivation of this study is to extend the algorithm to general dynamical
systems

— with odd number of degrees of freedom

— of which vector field is compressible




Hamiltonian Mechanics of charged particle in time-dependent EM fields

[M. Furukawa, A Matsuyama and Y. Ohkawa, Plasrr_wa Fusi_on Res. 11, 1:503003 (2016).] _ _
» Let us consider motion of a charged particle in electric and magnetic fields

» Hamiltonian is given by ; ? E?]zsrsge
Hlg.p.f] = (p — e;l(q,t)) +ed(q.t) q canon?cal coordinate
m p :canonical momentum
» Letus introduce extended phase space, where (4 ¢): electrostatic potential
z:=(q,p)" A(q,t): vector potential
= (q1,42. 43, t,p1, P2, 3, —E) " & lenergy

» Then the Hamilton’s equation can be written as
z=Jd:H with J:= ( _01 (1) )
— Dot denotes derivative with respect to “time” variable 7
— 1st-3rd components are ¢ =0,H and p= —04H
— 4th componens are i =1 and —-&=-90,H
p If we write the vector field as
O:H := Vy|z]

the formal solution is
Z(1) = ™1 2(0)



Exponential operator decomposition

_ [M. Fu_rukawa_, A. I\/I?tsuyama and Y. Ohkawa, Plasma Fusion Res. 11, 1_303003 (2(_)1 6).]
Since the Hamiltonian is not separable for the canonical variables

Let us introduce non-canonical variables:

-
z = (w,y,z,t,vm,vy,vz,—g)

Then the Hamiltonian becomes

i'(z,9) = %vz +ep(x,t) — €

The evolution equation becomes

¥ =JouH(Z) with 7

We decompose the Poisson tensor as

8
J'=>"J, with a=.
a=1
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Then the vector field is decomposed as

Vel =) Vu[Z]  with
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Exponential operator decomposition (cont’d)

[M. Furuk?wa, A_. I\/Iatquama and Y. Ohkawa, Plasma lfusion Res. 11, 1303003 (201 6).]_ _
» The formal solution is written by exponential operator expressing the time

advancement:
2/ (1) = 7 Ze=1 ValFl 5/ (0)

» The exponential operator can be approximated as
Tza 1 V4 H?y: v/ —|—O( )

— The right hand side (omitting the O(?) terms) means sequential
operations of ¢V«

— Each of the decomposed exponential operators can be calculated exactly

» This approximation can be used as a 1st-order algorithm for small time
interval At

— We call this algorithm as G1(7)

» The 2nd-order algorithm ( Sy(7) ) can be constructed by time-symmetric
decomposition

/ / / / / / / / / / / /
52(7_) — eQT\/leQTV2€27V3627'V4627'V5ezTV6ezTV7e7'V8627V7627'V6e27’V5627'V4eQ7'V3627'V2€27'V

» By combining several steps of Sy(,,—1)(7) nicely, we can construct Sz, (7)



Extension for general vector fields

» The arbitrarily high order of accuracy is achieved because

— time advancement by each exponential operator is performed exactly

— truncation error only arises when we decompose the full exponential
operator

» If we can decompose the vector field of a general dynamical system, where
each of the decomposed exponential operator can be integrated exactly, we
may obtain a numerical integration algorithm with arbitrarily high order as in

the case of the charged particle motion

» Two examples are shown in this presentation

Damped oscillator

The vector field is compressible, but the dynamics is regular (no chaos)

Lorenz model

The vector field is compressible
The dimension of the phase space is three (odd)
The dynamics can be chaotic




Damped oscillator : formulation

» The governing equations are

¢=Vlz]  with Z':Z('Zj) and V::(—x?iuv>

» The formal solution is
z(t) = 'V 2(0)
» Let us decompose the vector field as
H - — /U [yp— O
V=V,+V, with V:c-—(()) and VL-—(_x_m}>

» Then the 1st-order approximation of the exponential operator becomes

etV — etietVU + O(t2)

» Each operation of the decomposed exponential operators can be calculated
exactly as

— otVe i x(t) = x(0) + v(0)t
CotVer () = —Sa(0) 4 & (%x(O)—i—v(O))
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» Higher-order algorithms can be constructed by imposing the time-reversal
symmetry (2nd order) and the recurrence formula (arbitrarily high order)



Case 1 Damped oscillator : numerical results

» The accuracy of the numerical results is evaluated by comparison of the
energy with analytic solution:

|E_Ean| L 1 /Tdt |E_Ean|
Ean o T 0 Ean
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» The theoretical order of accuracy is almost achieved ( (At)® for Sio)



Lorenz model : formulation

The Lorenz model is given by
z=V]z] with z = (

The vector field is decomposed as

V=Vx+Vy +Vy,

—o0X +o0Y 0 0
Vx = 0 Vy = rX —-Y - XZ V, = 0
0 0 —bZ + XY

Then the 1st-order approximation of the exponential operator becomes

etV — etVX etVy etVZ s O(tQ)

Each operation of the decomposed exponential operators can be calculated
exactly as

— oW I Y (t) = rX(0) — X(0)Z(0) + e H(Y(0) — rX(0) + X(0)Z(0))

— V7 Z(t) = %X(O)Y(O) +e™ (Z(O) — %X(O)Y(O))

Higher-order algorithms are similarly constructed



-4  Lorenz model : numerical results (convergence)

8
» Parameters: 0=10, b=, r=28, X(0)=1, Y(0)=

} 54(At)
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» RK4 seems to show better convergence property
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@2 Lorenz model : numerical results (convergence) : cont’d

8
» Parameters: o =10, b=§, r=28, X(0)=1,6 Y(0)=1,6 Z(0)=20

b At=10"4

» The numerical results by various algorithms start to deviate around ¢t ~7
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o

-2 Lorenz model : numerical results (Liapunov exponent)
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» Parameters: oc=10, b= 3, T=28, X0)=1, Y0)=1, Z(0)=20
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Since e%9%7" ~5x 10% | an error of O(107?%) is amplified to O(1) during t =0
tot~7

We have not clarified the reason yet

Note that numerical results with parameters without chaos well agreed
among algorithms
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Conclusions

The numerical integration algorithm with arbitrarily high order has been
extended to general dynamical systems

— odd number of degrees of freedom

— compressible vector field

— although more testing is needed

Numerical results for the damped oscillator showed good convergence property

Convergence property for the Lorenz model (parameters giving chaos) was
better for the 4th-order Runge-Kutta method

— We have not clarified the reason yet

— Note that the numerical results without chaos well agreed among algorithms
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