3次元的な構造を持つ周辺磁場配位における プラズマ輸送解析と可視化

核融合科学研究所 小林政弘

1.3次元的な周辺磁場配位の例

2. 磁場構造(接続長分布)と予測される輸送

1

3.3次元輸送解析

4. 磁場のシアーによる影響:3次元的効果

5. まとめ

<u>ITERプラズマ立ち上げ時のリミター</u>

toroidal extent : $\Delta \phi \sim 12 \text{ deg.} (1.6\text{m})$ poloidal extent is ~ 2.1 m Surface area ~ 3 m²/each (Beryllium) P_{SOL} ~ several MW

Assumed symmetrically placed $(\phi=180 \text{ deg. apart each other})$

Power fall-off length : λ_p

<Simple estimation>

from energy conservation

$$\begin{aligned} & 2\Gamma_{//}\lambda_p = \Gamma_{\perp}L_C \\ & \swarrow \\ & \lambda_p \propto \sqrt{\frac{L_C(D_{\perp},\chi_{\perp})}{c_s}} \end{aligned}$$

 D_{\perp}, χ_{\perp} : cross. trans. coefficients (assumed to be anomalous)

For ITER, L_C is long, 2πRq~240m.
Because of localization of limiter, L_C >> 2πRq, at rational q surfaces.
D_{perp}, χ_{perp} unknown for ITER.
Long λ_p -> leading edge, short λ_p -> higher peak power load

Parallel energy flux : $\Gamma_{//}$

<Simple estimation>

Longer flux tubes are fed with more energy.
Because of localization of limiter, L_C >> 2πRq, at rational q surfaces.
When they hit limiter, they cause a hot spot!?
Cross trans. eases the dependence, Γ_{//} ∝ √L_C. To what extent ?

B field structure : connection length profiles

Fluid equations solved in EMC3

Plasma fluid equations

$$\begin{array}{ll} \text{ } & \nabla_{\parallel} \cdot (nV_{\parallel}) + \nabla_{\perp} \cdot (-D\nabla_{\perp}n) = S_{p}, \\ \text{ } & \nabla_{\parallel} \cdot (m_{i}nV_{\parallel}V_{\parallel} - \eta_{\parallel}\nabla_{\parallel}V_{\parallel}) \\ & + \nabla_{\perp} \cdot (-m_{i}V_{\parallel}D\nabla_{\perp}n - \eta_{\perp}\nabla_{\perp}V_{\parallel}) = -\nabla_{\parallel}p + S_{m}, \\ \text{ } & \nabla_{\parallel} \cdot (-\kappa_{i}\nabla_{\parallel}T_{i} + \frac{5}{2}nT_{i}V_{\parallel}) \\ & + \nabla_{\perp} \cdot (-\chi_{i}n\nabla_{\perp}T_{i} - \frac{5}{2}T_{i}D\nabla_{\perp}n) = k(T_{e} - T_{i}) + S_{ei}, \\ \text{ } & \nabla_{\parallel} \cdot (-\kappa_{e}\nabla_{\parallel}T_{e} + \frac{5}{2}nT_{e}V_{\parallel}) \\ & + \nabla_{\perp} \cdot (-\chi_{e}n\nabla_{\perp}T_{e} - \frac{5}{2}T_{e}D\nabla_{\perp}n) = -k(T_{e} - T_{i}) + S_{ee}, \end{array}$$

Fokker-Planck equation

$$\nabla_{\parallel} \cdot \left[\mathbf{a}_{\parallel} f - \nabla_{\parallel} (b_{\parallel} f) \right] + \nabla_{\perp} \cdot \left[\mathbf{a}_{\perp} f - \nabla_{\perp} (b_{\perp} f) \right] = S,$$

7

<Coefficients for different f's>

density n	velocity \mathbf{V}_{\parallel}	temperature $T_{i,e}$	
V_{\parallel}	$m_i n V_{\parallel} + \nabla_{\parallel} \eta_{\parallel}$	$\frac{5}{2}nV_{\parallel} + \nabla_{\parallel}\kappa_{i,e}$	
0	$\eta_{ }$	$\kappa_{i,e}$	
0	0	$(\chi_{i,e} - \frac{5}{2}D)\nabla_{\perp}n$	
D	$m_i n D$	$n\chi_{i,e}$	
S_p	$-\nabla_{\parallel} p + S_m$	$\pm k(T_e - T_i) + S_{ei,ee}$	
	density n V_{\parallel} 0 0 D S_p	$\begin{array}{c c} \begin{array}{c} \text{density n} & \text{velocity } \mathbf{V}_{\parallel} \\ \hline \mathbf{V}_{\parallel} & m_i n \mathbf{V}_{\parallel} + \nabla_{\parallel} \eta_{\parallel} \\ 0 & \eta_{\parallel} \\ 0 & 0 \\ D & 0 \\ D & m_i n D \\ S_p & -\nabla_{\parallel} p + S_m \end{array}$	$\begin{array}{c cccc} density n & velocity \mathbf{V}_{\parallel} & temperature T_{i,e} \\ \hline \mathbf{V}_{\parallel} & m_i n \mathbf{V}_{\parallel} + \nabla_{\parallel} \eta_{\parallel} & \frac{5}{2} n \mathbf{V}_{\parallel} + \nabla_{\parallel} \kappa_{i,e} \\ 0 & \eta_{\parallel} & \kappa_{i,e} \\ 0 & 0 & (\chi_{i,e} - \frac{5}{2}D) \nabla_{\perp} n \\ D & m_i n D & n \chi_{i,e} \\ S_p & -\nabla_{\parallel} p + \mathbf{S}_m & \pm k (T_e - T_i) + S_{ei,ee} \end{array}$

Computational domain

Plasma parameter modulation with Lc profile

Results of EMC3-EIRENE

第11回若手科学者によるプラズマ研究会 2008/03/17-19 於 原研那珂

亰研那珂

Parameter scan : D, χ_{\perp}

n_{up}, P_{SOL} <= core transport simulation

D_1: scaled from JET data with respect to Ip χ _1= 2 ~ 4D _1 => λ_{Te}/λ_n =1 ~1.5

0.2116				
lp (MA)	Psol (MW)	D ⊥ (m**2/s)	λ_{Te}/λ_{n}	n _{up} (e19m**-3)
2.5	1.0	1.0 ~ 3.0	1	0.12
4.5	2.0	0.3 ~ 1.0	1.5	0.17
6.5	3.0	0.2 ~ 0.4	1.5	0.22

0.5n_G

0 2n

<u> </u>				
2.5	1.3	1.0 ~ 3.0	1	0.30
4.5	2.6	0.3 ~ 1.0	1.5	0.44
6.5	4.0	0.2 ~ 0.4	1.5	0.54

0.5n_G, +50% P_{SOL}

2.5	2.0	1.0 ~ 3.0	1	0.30
4.5	4.0	0.3 ~ 1.0	1.5	0.44
6.5	6.0	0.2 ~ 0.4	1.5	0.54

 λ_p < a few cm : no dependence of $\lambda_p \propto \sqrt{L_c}$!? More than 90% of power deposited on limiter!!

Role of magnetic shear to squeeze short & long flux tubes

Connection length Lc : squeeze of long & short flux tubes

Iong-Lc reduces ||-to-⊥transport ratio

Transport process : in poloidal direction

Field line pitch relative to rational surfaces

$$\Theta^* = \frac{r_i a}{R} \frac{d}{dr} \left(\frac{1}{q}\right)$$

r_i : distance from rational sf.

In ITER start-up,

$$\Theta^* \sim 2 \times 10^{-3} \gg \sqrt{\frac{\chi_{\perp}}{\chi_{//}}} \sim 10^{-4}$$

Parallel transport is effective to distribute energy in poloidal direction

16

Summary

 Toroidally discrete limiter introduces non-axisymmetric flux tube structure. Resonance feature of flux tube trajectories at rational q surfaces
=> a complex 3D pattern in L_c profile

2. The 3D edge transport code, EMC3-EIRENE, has been implemented on the ITER start-up limiter configuration, in order to analyze 3D transport properties and to investigate the limiter power load.

- 3. The severity of problem associated with very long flux tubes was mitigated and no significant power loss to outside of SOL.
- → Due to magnetic shear, long & short flux tubes are squeezed and the energy is effectively collected by short ones via radial cross-field transport.