第11回 若手科学者によるプラズマ研究会 「プラズマ中の現象の視覚化とその展望」 2008年3月17日-19日 原子力機構(那珂)

LHD実験の進展 ~高Ti放電&IDB放電を中心に~

永岡 賢一 核融合科学研究所

LHD NISS

Large Helical Device (LHD)

negative NBI(BL1) Heliotron configuration of l=2/m=10 field period All superconducting coil system Plasma major radius 3.42-4.1 m Plasma minor radius 0.6 m Plasma volume 30 m³ Toroidal field strength 3 T

> positive-NBI(BL4)

negative-NBI(BL2)

negative-NBI(BL3)

Heating Systems and Achieved Power
negative-NBI (H-inj. 180keV)14MW
14MW
7.5MWpositive-NBI (H-inj. 40keV)7.5MWICRF (25 – 100MHz)2.7MWECH (84 & 168GHz)2.1MW

Plasma vacuum vessel

LHDのプラズマ

LHDプラズマのパラメータ

Einal Targata

Achievemente

	Fillal Targets	Acmevements			
Fusion triple product: nτT	5 x 10 ¹⁹ keVm ⁻³ s 2.5 keV : <t.></t.>	5 x 10 ¹⁹ keVm ⁻³ s 0 56 keV : T.(0)			
Density	1 x 10 ²⁰ m ⁻³	3.9 x 10 ²⁰ m ⁻	.9 x 10 ²⁰ m ⁻³		
Energy confinement time	0.1 - 0.2 s	0.23 s			
Electron Temperature: T _e					
Central T	10 keV	10 keV	15 keV		
Density	2 x 10 ¹⁹ m ⁻³	5 x 10 ¹⁸ m ⁻³	2 x 10 ¹⁸ m ⁻³		
Ion temperature: T _i					
Central T _i	10 keV	13.5 keV	6.8 keV		
Density	2 x 10 ¹⁹ m ⁻³	3 x 10 ¹⁸ m ⁻³ (Ar gas)	2.0 x 10 ¹⁹ m ⁻³ (H gas)		
Beta: β	β = 5 %	β = 5.0 %			
Magnetic field strength	1 - 2 T	0.425 T			
Steady state operation					
Pulse length	3600 s at 3 MW	794 s at 1.05 MW 3268 s at 490 kW (Input Energy: 1.6GJ)			

LHDプラズマのパラメータ

OLHDでは、IDB/SDCプラズマの 発見により、高密度領域で高い3 重積(ntT)の進展が得られている。

OLHDの3重積は、C-Modや ASDEX-Uなどの中型トカマク装 置と同程度。

プラズマ特性の磁気軸依存性

〇粒子軌道と輸送は、内 寄せ配位の方が良い。

OMHD安定性は磁気井 戸となる外寄せ配位の方 が良い。

〇総合的な閉じ込めは、
 安定性と粒子閉じ込め特
 性の競合できまる。高Ti、
 βなどは内寄せ配位の方
 が良い傾向。

2007年度実験テーマリーダー・サブリーダー一覧

テーマ		リーダー	サブリーダー		
ミッション研究	1	高Wp、高密度、LIDを用いた閉じ込 め改善	坂本隆一	小林政弘	
	2	高β領域の拡大	大館 暁	榊原 悟	
	3	定常プラズマ保持と高性能化	斎藤健二	吉村泰夫	
	4	高イオン温度領域の拡大	横山雅之	永岡賢一	
物理テーマ研究	5	コアプラズマの熱・粒子輸送	福田武司 (阪大)	田村直樹	舟場久芳
	6	周辺プラズマの物理とプラズマ・壁 相互作用	大 野 哲 靖 (名大)	増崎 貴	芦川直子
	7	MHD 平衡と安定性	中 村 祐 司 (京大)	成嶋吉朗	渡邊清政
	8	高エネルギー粒子の物理	村 上 定 義 (京大)	徳沢季彦	
	9	波動加熱物理	田 中 仁 (京大)	伊神弘恵	関 哲夫
エ 学	10	装置工学実験	岡 村 哲 至 (東エ大)	柳 長門	

Contents

LHD実験で精力的に行われている2つのタイプの放電について紹介する。

〇高イオン温度プラズマ

OInternal Diffusion Barrier(IDB)/ Super Dense Core(SDC)プラズマ

高イオン温度プラズマ

〇低エネルギービームによるイオン加熱
 〇達成イオン温度の進展
 〇高イオン温度の高密度領域への拡大
 〇イオン温度分布と輸送解析:閉じ込め改善の実現
 〇不純物ホールの形成

Installation of P-NBI for Ion Heating

For ion heating experiments in low Z discharge, the low energy and high power NBI was required

Installation of Perpendicular NBI (40keV) in 9th and 10th campaigns of LHD

高Tiプラズマの進展と改善モードの発見

Oイオン加熱パワーの増加に伴い、イオン温度領域が飛躍的に拡大。
 -T_{i0}=6.8keVの実現
 OCXSによるイオン温度分布計測
 -イオン閉じ込めの改善
 -不純物ホール形成

ポロイダル視線に加え、トロイダル視線を用いた荷電交換分光計測を行った

Op-NBIをプローブビームとして、イオン温度分布の計測が可能となった。 〇垂直入射NBI4は、100%/50%のモジュレーションを行うとことで背景信号を取得する

高Ti放電

OP-NBは、イオン温度計測の背景光取得のために100%(250ms)&50%(50ms)のモジュレーション運転。
OP-NB加熱プラズマにN-NB加熱を重畳するとイオン温度と蓄積エネルギーが急激に増加し、その後減少する。
O高Ti維持時間(て:Ti>0.8Ti_max)は、
~0.12s。エネルギー閉じ込め時間(~0.05s)の2~3倍程度。
Oターゲットプラズマは、N-NB保持よりもP-NB保持のほうがイオン温度上昇は顕著。密度分布の影響が示唆。
Oイオン温度の上昇は、非常にデリケート。
P-NBのモジュレーションのタイミングやNB

パワーなどへ強く依存。

中心ピークしたイオン温度分布

ONBIの追加熱後、急峻な勾配を持つ中心ピークしたイオン温度が実現する。 Oその後、イオン温度は下がってしまう。

Oイオン加熱パワーの増加によりイ オンの閉じ込め改善を実現し、中心 イオン温度6.8keVを2x10¹⁹m⁻³の線 平均密度で達成した。

〇到達イオン温度のNBの直接加熱 パワーの依存性は、 $T_i \propto P_i^{\alpha}: \alpha = 1.0 \sim 1.3$ 〇ガスパフやペレット入射を用いて 高イオン温度を高密度領域へ拡大し、 $3.7x10^{19}m^{-3}$ の線平均密度で3keVを 達成した。

加熱パワーによる比較

ONBI加熱パワーのみが異なる連続するショットで、到達イオン温度が劇的に変化。 O加熱パワーの増加により、輸送改善が実現。 O密度と電子温度の変化は、小さい。

熱輸送解析

○イオンの熱輸送係数は、加熱パワーの増加に伴って、全領域で低減。
 ○新古典輸送の変化は、小さい。
 ○新古典径電場は、全領域で負電場(イオンルート)。

O径電場は、加熱が大きい場合の方が大きい。負電場による輸送低減(イオン ルートシナリオ)を示唆。

トロイダル回転の観測

Oイオン温度の上昇に伴って、大きなトロイダル回転が観測される。 の回転方向は、接線入射NBIの向きに支配される。

Ti勾配駆動のトロイダル回転

ONBIパワースキャンを行い、イオン温度とトロイダル回転の変化を調べた。 Oトロイダル回転は、イオン温度の上昇に伴いCo方向に回転する傾向が得られた。 Oこのとき、径電場の変化はほとんどなし。

LHDで観測されているトロイダル回転:接線NBI駆動、径電場駆動、イオン温度勾配駆動 R_{ax}=3.75m B_t=2.64T γ =1.254 Bq=100%

不純物ホールの観測

〇計測系の改良。見えなかった(測れなかった)ものを測る。 〇プラズマ放電シナリオの最適化

- -密度分布制御
- ーTi/Te比の最適化

〇壁条件の作成(低リサイクリング化)

OInternal Diffusion Barrier (IDB)/Super Dense Core (SDC)プラズマ とCore Density Collapse (CDC)
O高中心圧力
O高中心密度
O高蓄積エネルギー
O高核融合三重積

IDB/SDC plasma with LID

OLocal Island Divertor (LID)配位で IDB形成を観測。

Oペレット入射による中心粒子供給に より、ρ~0.5付近に急峻な密度勾配 (IDB)。

〇中心の密度は、5x10²⁰m⁻³に到達 (SDC).

IDB/SDC plasmas with HD

〇ヘリカルダイバータ配位においても
 外寄せ(Rax>3.7m)配位でIDB形成。
 〇リサイクリング低減が重要。
 〇中心圧力はRax=3.75mで遷移的
 に増加。

IDB/SDCプラズマの構造

○通常のガスパフ放電では、凹型密度分布。 ○ペレット入射により中心ピークした密度分布 の形成 ○周辺辺の密度が低い」○□プロでは雨子

〇周辺部の密度が低いIDBプラズマでは電子 温度勾配が大きく、コア部の電子温度が高い。 〇結果的にIDBプラズマの中心圧力は、飛躍的 に増大。

粒子輸送の特性

〇コア部の輸送は、高い密度領域でも低いレベルを保つ。 〇周辺部の輸送が大きくなり、周辺部に低密度領域(マントル)が形成。 〇マントル部で電子温度勾配が大きくなり、コア部の高電子温度を維持。

Core Density Collapse

〇連続ペレット入射を用いたコア粒 子供給により密度の増加。

〇ペレット入射後、周辺部の密度の 急激な減少と温度のリカバリーにより中心圧力の増加(IDB形成)。

Oしばしば、中心圧力の突発的減少 (CDC)が起こる。大きなシャフラノフ シフトが影響していると考えられる。

〇不純物の蓄積は、観測されていない。
 放電中にZ_{eff}=1~2を維持。

加熱の最適化による高核融合三重積

LHD NIES

> 〇高密度IDBプラズマへの加熱入力を放電中に 低減し、*t*Eの増大を図った。(アニーリング・オ ペレーション)

> ○加熱入力低減後も、密度・温度はほぼ一定に 保たれるため、加熱入力低減によりτEが増大。
> その結果、nτT=0.5x10²⁰keVsm⁻³を300ms間 維持することに成功。

IDBプラズマの持つ記録

第10サイクルまでの成果

□中心圧力 P(0):130kPa

□中心密度 n_e(0):1x10²¹ m⁻³

□核融合三重積 nT:0.44x10²⁰ keV s m⁻³

□プラズマ蓄積エネルギー Wp:1.44 MJ

<u>第11サイクルでの成果</u>

□中心圧力 P(0):140kPa

□中心密度 n_e(0):1.1x10²¹ m⁻³

□核融合三重積 n_TT:0.5x10²⁰ keV s m⁻³ (300ms維持)

□プラズマ蓄積エネルギー Wp:1.62 MJ

高密度運転シナリオ

〇ヘリカル型は

高密度運転に適していることを利用した運転シナリオ。

まとめ

		テーマ	リーダー	サブリ	ーダー
ミッション研究	1	高Wp、高密度、LIDを用いた閉じ込 め改善	坂本隆一	小林政弘	
	2	高β領域の拡大	大館 暁	榊原 悟	
	3	定常プラズマ保持と高性能化	斎藤健二	吉村泰夫	
	4	高イオン温度領域の拡大	横山雅之	永岡賢一	
物理テーマ研究	5	コアプラズマの熱・粒子輸送	福田武司 (阪大)	田村直樹	舟場久芳
	6	周辺プラズマの物理とプラズマ・壁 相互作用	大 野 哲 靖 (名大)	増崎 貴	芦川直子
	7	MHD 平衡と安定性	中 村 祐 司 (京大)	成嶋吉朗	渡邊清政
	8	高エネルギー粒子の物理	村 上 定 義 (京大)	徳沢季彦	
	9	波動加熱物理	田中 仁 (京大)	伊神弘恵	関 哲夫
エ 学	10	装置工学実験	岡 村 哲 至 (東エ大)	柳 長門	

