Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas

Y. Nagashima¹, S.-I. Itoh¹, S. Shinohara¹, M. Fukao², A. Fujisawa³, K. Terasaka¹,

T. Nishijima¹, M. Kawaguchi¹, Y. Kawai¹, N. Kasuya³, G.R. Tynan⁴, P.H. Diamond⁴,

M. Yagi¹, S. Inagaki¹, T. Yamada⁵, K. Kamataki¹, T. Maruta¹ and K. Itoh³

Kyushu Univ., Kasuga, Japan, ² Myojo-cho, Uji, Japan, ³ NIFS, Toki, Japan,
⁴ UCSD, La Jolla, USA, ⁵ Univ. Tokyo, Kashiwa, Japan

Understanding physics of turbulent transport and exploring control methods of the transport in fully-developed turbulence inside confined plasmas are left as crucial challenges in plasma physics and controlled nuclear fusion research. In linear magnetized plasma device of Kyushu University [i.e. the Large Mirror Device (LMD)], we investigate spontaneous development of drift-wave fluctuations and their nonlinear processes. We focus on realization of large amplitude fluctuations by producing helicon plasma with high density up to 10^{19} m^{-3} and by reducing ion-neutral collisional damping: By reducing filling working gas pressure in discharges with fixed magnetic field strength, we observe a development of drift wave spectrum from weak turbulence to (developing) strong turbulence. The observation of turbulence development is similar to previous reports given in basic plasma experiments [1, 2]. Especially in the vicinity of critical filling gas pressure, the weak turbulence composed of coherent spectral peaks changes gradually in time into a signature of broadband spectrum. In the experimental condition, we observe drift wave fluctuations as well as a low-frequency ($\sim 400 \,\text{Hz}$) potential oscillation. The low-frequency potential oscillation has azimuthally and axially symmetric structures, and has finite radial wavenumbers. In addition, Time Delay Estimation analysis [3] shows that the lowfrequency potential oscillation is strongly correlated with an oscillation of poloidal phase/group velocity of the drift wave fluctuation. These observations do not contradict the picture that the low-frequency potential oscillation is the zonal flow potential [4]. By use of the bispectral analysis [5] based on the vorticity equation, significant nonlinear energy transfers between the zonal flow potential and the drift wave fluctuation are identified.

References

- [1] T. Klinger, et al., Phys. Rev. Lett. 79, 3913 (1997)
- [2] M. Burin, et al., Phys. Plasmas 12, 052320 (2005)
- [3] C. Holland, et al., Phys. Rev. Lett. 96, 195002 (2006)
- [4] P.H. Diamond, et al., Plasma Phys. Control. Fusion 47, R35 (2005)
- [5] Y. Kim and E. Powers, IEEE Trans. Plasma Sci. PS-7, 120 (1979)