The 11th meeting of study on Plasma Science for Young Scientists, Mar. 17-19 2008, JAEA, Naka, Ibaraki, Japan

Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas

Y. Nagashima¹, S.-I. Itoh¹, S. Shinohara¹, M. Fukao², A. Fujisawa³,
K. Terasaka¹, T. Nishizima¹, M. Kawaguchi¹, N. Kasuya³, Y. Kawai¹,
G.R. Tynan⁴, P.H. Diamond⁴, M. Yagi¹, S. Inagaki¹, T. Yamada⁵,
T. Maruta¹, K. Kamataki¹, and K. Itoh³

¹Kyushu University, ²Uji (Kyoto), ³NIFS, ⁴UCSD, ⁵Univ. Tokyo

Content

1. Observation of the drift-wave and the residual zonal flow

2. Linear dispersion relation

- i) Comparison of normalized fluctuation levels
- ii) Wave numbers of fluctuations
- iii) Poloidal velocity fluctuations derived from TDE method
- 3. Modulational instability
- 4. Bispectral analysis

Aim of the Specially-Promoted Research

Quantitative study of "Structural formation and selection rule in turbulent plasma"

Red: Completed now! **Orange: Progress**

Figure 1. Newparadigm for the plasmaturbulence.

Experimental devices

The Large Mirror device (LMD [1]) ^{[1] Y. Saitou, et al., Phys. Plasmas 14 (2007) 072301}

Drift wave and residual zonal flow

DW (7-8 kHz) and residual ZF (~400 Hz) are observed.

Normalized fluctuation spectra

DW (density ~ potential) is located at r=3.5-4cm. Residual ZF exists at r<~4.5cm (n > ϕ edge oscillations r>~4.5cm).

DW has m=3-5 and n=2-3, while residual ZF potential has $m,n\sim0$.

inward and outward.

Linear dispersion relation

Growth rate and frequency from Numerical Linear Device code ^[2].

Frequency calculation based on Hasegawa-Mima equation

NLD calculation shows that *m*=4 mode is most unstable. DW frequency base on HM eq. is consistent with observation.

derived from the Time Delay Estimation^[3].

[3] C. Holland, et al., Phys. Rev. Lett. **96** (2006) 195002

Amplitude of the DW is significantly modulated by the ZF.

Bispectral analysis

Nonlinear energy transfer between the DW and the ZF is significant.

Summary

- 1. In this presentation, we have shown "the drift wave–zonal flow turbulence" in a cylindrical laboratory plasma.
- 2. Linear dispersion relations of observed fluctuations are consistent with the zonal flow (potential and poloidal velocity fluctuation) or the drift-wave.
- 3. Modulation of the drift wave amplitude by the zonal flow was confirmed.
- 4. The bispectral analysis of $\langle E_{\theta}E_{r}\Phi_{f}\rangle$ shows significant nonlinear energy transfers between the zonal flow and the drift wave spectrum.