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Figure1. Newparadigm fortheplasmaturbulence.

Plasma production:
  i) exitation of turbulence
  ii) excitation of zonal flow
  iii) Saturation of turbulence
with zonal flows

Observation:
  i) Spatio-temporal structure of
the drift wave-zonal flow system
  ii) Comparison of intensity
between the zonal flow and
turbulent Reynolds stress
  iii) Nonlinear energy transfer

Aim of the Specially-Promoted Research

Quoted from P.H. Diamond, et al., Plasma Phys.
Control. Fusion 47 R35 (2005)

Quantitative study of “Structural formation and selection rule in
turbulent plasma”

Picture of the drift wave-zonal flow system

Conventional picture of drift-wave turbulence
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Experimental devices

The Reynolds stress
probe

The Large Mirror device (LMD [1])
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[1] Y. Saitou, et al., Phys. Plasmas 14 (2007) 072301



Drift wave and residual zonal flow

DW (7-8 kHz) and residual ZF (~400 Hz) are observed.
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(c) fluctuation level (0.3-0.5 kHz)
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DW (density ~ potential) is located at r=3.5-4cm.
Residual ZF exists at r<~4.5cm (n > φ edge oscillations r>~4.5cm).
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Poloidal and axial wave numbers

DW has m=3-5 and n=2-3, while residual ZF potential has m,n~0.
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Radial wave numbers (radial profile)

Residual ZF  has finite radial wave numbers, and propagates
inward and outward.
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Linear dispersion relation

NLD calculation shows that m=4 mode is most unstable.
DW frequency base on HM eq. is consistent with observation.

ωde,th = 6.22-8.26 kHz at
minimum RS gradient
ωde,exp = 7-8 kHz! 
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Poloidal velocity fluctuation

Residual ZF is associated with the poloidal velocity fluctuation
derived from the Time Delay Estimation[3].  

Residual ZF

measured at r=2.5 cm where
kr of the ZF is finite.

(Vθ and potential)

[3] C. Holland, et al., Phys. Rev. Lett.
96 (2006) 195002



Modulational interaction

Amplitude of the DW is significantly modulated by the ZF.
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Bispectral analysis

Nonlinear energy transfer between the DW and the ZF is
significant.
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Summary
1. In this presentation, we have shown “the drift wave–zonal

flow turbulence” in a cylindrical laboratory plasma.

2. Linear dispersion relations of observed fluctuations are
consistent with the zonal flow (potential and poloidal
velocity fluctuation) or the drift-wave.

3.  Modulation of the drift wave amplitude by the zonal flow
was confirmed.

4.  The bispectral analysis of <EθErΦf> shows significant
nonlinear energy transfers between the zonal flow and the
drift wave spectrum.


