第12回若手科学者によるプラズマ研究会2009年3月16 - 18日 JAEA那珂核融合研究所

BA計画の現状・今後の研究

原子力機構 鎌田 裕

若手科学者によるプラズマ研究会

第1回(1997):「プラズマ粒子制御」 第2回(1999):「プラズマ中の揺動と不安定性」 第3回(2000):「プラズマ中の電場形成と役割」 第4回(2001):「定常化研究」 第5回(2002):「周辺プラズマ及びプラズマ・壁相互作用」 第6回(2003):「輸送と構造形成」 第7回(2004):「燃焼プラズマに向けた現状と展望」 第8回(2005):「不安定性とプラズマの振る舞い」 第9回(2006):「燃焼プラズマに向けた計測と制御」 第10回(2007):「ITERに向けたプラズマ科学の新展開」 第11回(2008):「プラズマ中の現象の視覚化とその展望」 第12回(2009):「プラズマ中の現象の解析手法・モデリング・ 予測手法の新展開

ITER・BA活動の最近の進捗

核融合エネルギー実用化に向けた全体ロードマップ

本報告書は、文部科学省からの依頼により、トカマクによって原型炉を建設するためのケーススタディとして 核融合エネルギーフォーラムによって作成されたものである。全文は以下のウエブサイトからダウンロードが可能 http:/www.naka.jaea.gp.jp/fusion-energy-forum/

核融合エネルギーフォーラムITER・BA技術推進委員会 ロードマップ等検討ワーキンググループ報告、2008.6

- ・自分の世代が、どのような位置にいるか
- 行ないたいことは何か
- 求められるものは何か

JT-60SA (JT-60 Super Advanced)計画

幅広いアプローチ計画におけるサテライトトカマク計画と トカマク国内重点化装置計画(国内計画)の合同計画

 OITERの技術目標達成のための支援研究

 臨界条件クラスのプラズマを長時間(100

 秒程度)維持する高性能プラズマ実験を行い、その成果をITERへ反映させる。

〇原型炉に向けたITERの補完研究 原型炉で必要となる高出力密度を可能と する高圧カプラズマを100秒程度維持し、原 型炉の運転手法を確立する。

JT-60SAの装置パラメータ

プラズマ形状等の幅広い制御性

プラズマ電流 I _p	5.5MA
トロイダル磁場 B _t	2.25T
大半径 R _p	2.97m
小半径 a _p	1.18m
非円形度 κ _x	1.93
三角度 δ _x	0.5
表面安全係数 q ₉₅	3
プラズマ体積 V _p	133m ³
フラットトップ時間	100 s
加熱・電流駆動パワー	41MWx100 s
垂直入射 NBI	16 MW
接線入射(Co) NBI	4 MW
接線入射(CTR) NBI	4 MW
負イオン源NBI	10 MW
ECRH	7 MW
プラズマ対向機器熱負荷	15 MW/m ²
中性子の年間発生量	1.5 x 10 ²¹

JT-60SAのプラズマ領域

• The JT-60SA will create no substitute database for steady-state high-beta operation in the break-even equivalent regime.

Non-circular superconducting tokamaks

T-60SA JT-60SAの無次元量領域 ~ ITER & DEMO

- To be fair, the same assumption is employed for the profiles even for JET. Engineering parameters are taken from each machine to evaluate ρ_p^* and ν^* . (JET: R=2.8m, a=1.02m, κ =1.7, δ =0.29, P=40MW)
- As indicated, JT-60SA can step further towards the reactor relevant regime.

スケジュール

ファーストプラズマ= 2016年3月

- JT-60SA is planned to be upgraded according to the phased equipment plan.
- Exploitation within the BA period will aim at the initial research phase:
 - HH operation for commissioning with the plasmas
 - DD operation for identification of the issues in preparation for full DD operation

	Phase	Expected Duration		Annual Neutron Limit	Remote Handling	Divertor	P-NB	N-NB	ECRF	Max Power	Power x Time
Initial Research Phase	phase I	1-2 y	Η	-	R&D	LSN partial monoblock LSN full- monoblock	10MW		1.5MW x100s	23MW	NB: 20MW x 100s 30MW x 60s duty = 1/30 ECRF: 100s
	phase II	2-3y	D	4E19			Perp. 13MW 10M Tang. 7MW		+ 1.5MW x5s	33MW	
Integrated Research Phase	phase I	2-3y	D	4E20				10MW	7MW	37MW	
	phase II	>2y	D	1E21	Use						
Extended Research Phase		>5y	D	1.5E21		DN	24MW			41MW	41MW x 100s

研究の進め方

JT-60SAの機器整備

TF Coil

JT-60SAの計測システム

View field for Thomson scattering (Outer edge, Lower port) Be Beam fine for Thomas on scattering

View field for Thomson scattering (Core, Equatorial port)

060614

P8 section

VMB4

Laser Roon

VMB3

or nterferomete

• Diagnostic systems to measure the plasma parameters are shown below.

		1141 HE 1141
For Machine Protection and Operation		LI LI
Neutron monitor	Neutrons	(\)X(U B B
Neutron activation measurement	Neutrons	EC.
Visible TV camera	Plasma-wall interaction	
Da emission monitor	Particle recycling	
Divertor Langmuir probe	Plasma Configuration.	
· ·	Electron density and temperature	B Constant
Infrared TV camera (divertor)	Heat load	ы м
or Fundamental Parameter Measurement		manintor "
YAG laser Thomson scattering system	Electron density and temperature	Zar more Frank
CO2 laser interferometer / polarimeter	Electron density	
(tangential and vertical)		RH View field for
Electron cyclotron emission diagnostics	Electron temperature	Thomson sci (Inner edge,
(Fourier transform spectrometer, Grating p	olvchoromator. Heterodyne radiometer)	NOTION COLUMN
Charge exchange recombination spectroscopy	Ion temperature, Plasma rotation, Impurity	
Z _{eff} monitor (Visible bremsstrahlung emission)	Impurity	
VUV spectrometer	Impurity	
Motional Stark effect polarimeter	Plasma current profile	retro reflector
Bolometer (main, divertor)	Radiation loss power	
	-	
or Physics Understanding		
Soft X-ray detector array	Soft X-ray emission	
Neutron emission profile monitor	High-energy ions	
14 MeV neutron detectors	High-energy ions	
Neutron spectrometers	High-energy ions	vacuum /
Infrared TV camera (first wall)	High-energy ions	windows,
Li-beam probe	Plasma current profile in the edge	valves,
Reflectometer	Perturbations	sinutiers
Reciprocating Mach probe	Plasma flow	
	Electron temperature and density in the SOL	
Visible spectrometer for the divertor	Impurity, Recycling	-Age Ale
VUV spectrometer for the divertor	Impurity	
Neutral gas pressure gauge	Neutral gas pressure	
(Penning gauge, Fast response ionization a	auge)	VMB6

ITERの燃焼プラズマ JT-60SAの高圧力定常プラズマ にどう立ち向かうか?

燃焼・高β プラズマの性質

現象の広がり:時間、空間、温度領域 =>これが半径数m以内に共存

系全体:広範な時空間領域 要素過程:近接時空間での協同

プラズマは自律・多階層・複合系=>どう理解し、どう制御するか?

総合性能:燃焼状態で同様に達成・維持できるか?

必要な要素性能を高い次元で統合=システムとしての最適化

分布(勾配):輸送特性&安定性が大きく変化

発見、解明、実証=>統合

解明した素過程を統合する研究が必要

まとめ: 自分のアプローチを

プラズマは「システム」である。=> 自律、多階層、複合 JT-60SA・ITERに向けた研究段階に入った。

予測:見つけた現象を、 どう一般化するか。 どう外挿するか。(そのままで0Kか。)

> それを確かめるためには どんな実験が必要か どんな計測が必要か どんな計算が必要か

これらを、どのように制御に使うか

JT-60Uの先進トカマク運転領域

JT-60U

Operation regimes of AT plasmas are significantly expanded.

Steady-state scenario for ITER and DEMO

High $\beta_N \sim 3 > \beta_N^{\text{no-wall}}$ for ~5 s (>3 τ_R) in WS regime

RWM can be stabilized by V_τ

•Suppression of High β_N bursting mode is also important

High $\beta_N > \beta_N^{no-wall}$ with high $f_{BS} \sim 0.9$ is obtained at $q_{95} \sim 5$ in RS regime

 Integrated performance almost satisfies ITER SS scenario.

Hybrid scenario for ITER

 β_N =2.6 and H_{H98(y,2)}=1 for 25 s (~15 τ_R) with f_{BS}>43% and G-factor = 0.54

Heat flux can be handled with gas control

- The peak heat flux can be suppressed within the mono block capability gas puffing.
- Considering 5.5MA operation, $n_{e,ave} \sim 1x10^{20}$ m⁻³ at f_{GW}=0.8, $n_{e,sep} = 2.7x10^{19}$ m⁻³ is acceptable.

High β_{N} steady state operational space

- Assuming profiles, full-CD (I_{OH} =0MA) solutions are evaluated by ACCOME with varying I_p and f_{GS} . Full power injection is assumed.
- full CD at 2.3 MA (with $\rm f_{GW}$ ~0.9) to 2.9 MA (with $\rm f_{GW}$ ~0.6) can be expected with moderate $\rm H_{H}$ of 1.3.
- Here q_{95} is around 5.5, q_{min} ~1.6 ρ_{min} ~0.5 0.55.
- I_p of 2.9 MA is limited by the maximum in B_t .

T-60SA

• f_{BS} up to ~70% is expected with DEMO relevant β_N .