第13回 若手科学者によるプラズマ研究会 (3/10/2010)

梶原 健 日本原子力研究開発機構 加熱工学研究グループ

電子銃形状の最適化

- 電子銃の形状を変更
 - 温度上昇による変形を考慮
 - 不要な二次電子を抑えるため段差をつけた

安定した出力で長時間運転が可能

モード変換器の改良(2006)

JAEA

100秒を超える運転が可能となりショット中に主磁場を変 更できるようになった

JT-60SA概要

•トロイダル磁場 B_T~2.25T

- •パルス幅:100秒
- ・ファーストプラズマ 2016年/3月

・日欧協力による建設

JT-60SA ECH計画

- •ECHシステムとしては初期フェーズは1MW/100秒ジャイロトロンx2及び1MW/ 5秒ジャイロトロンx2、伝送ライン4本、伝送効率75%、入射ランチャー2台を計 画している。
- •その後は入射パワーで7MW(発振パワー9MW、ジャイトロン9本)まで増力の 予定

	Phase	Expected Duration		P-NB	N-NB	ECH/ECCD	Max Power	Power x Time
	phase I	1–2y	Н	10MW	10MW	1.5MWx 100s + 1.5MWx5s	23MW	
Initial Research Phase	phase II	2–3y	D	Perp. 13MW Tang. 7MW			33MW	NB: 20MW x 100s 30MW x 60s duty = 1/30 ECRF: 100s
Integrated Research Phase	phase I	2–3y	D			7MW	37MW	
	phase II	>2y	D					
Extended Research Phase		>5y	D	24MW			41MW	41MW x 100s

長パルスジャイロトロンへの改造

M1

60.3mm)

Local

oscillator

低パワー試験結果

0.0 m

ITERにおけるECH/ECCDの役割

- ・斜め上ポートランチャー
 - •特徴:周辺加熱、集光性を重視
 - •目的:NTMの抑制
- •水平ポートランチャー
 - •特徴:中心加熱、電流駆動効率を重視、逆方向電流駆動
 - •目的:中心付近電流駆動、電流分布制御、初期電離によるプラズマ生成の補助

ITER ECHシステム

ITERの要求値(1MW/50%/500秒)の達成

800kW-1時間連続運転

(JAEA)

出力0.8MW-1時間(3600秒)-効率57%の動作

ITERに向けた繰り返し運転試験

伝送損失100mあたり1%

600kW-240秒 (最長1000秒)

伝送効率の測定 Miter C:6m Miter Gyrotron Bend Bend RF A:18m E:2m B:1m D:1m **63.5mm corrugated Waveguide** To dummy load 50 B ∆T[K] Α 導波管の温度上昇より求めた損失=回折損失: 2.41% ミラー冷却水の温度上昇より求めたオーミック損失:~0.44% (マイターベンドーつあたり0.11%) ベンド1つあたりの損失0.7%(理論値~0.5%) → ITERではベンドが8-9個。 約5-7%のベンドに起因する損失が見込まれる(要求値:約10%以下)

導波管の温度上昇

- 0.5MW / 1000s 運転でも導波管の温度上昇は飽和せず.
- マイターベンドのミラーの冷却は導波管の冷却には効かない。→空冷でもよいのでなんらかの冷却対策が必要

水平ランチャー構造

JAEA

まとめ

- ジャイロトロンの原理とこれまでの進展
 - 主要なブレークスルー
 - 電力回収型ジャイロトロンの開発
 - ジャイロトロン出力窓に人工ダイヤモンドを採用
 - ジャイロトロン内蔵の高効率モード変換器の開発
- JT-60SAにおけるECHシステム
 - ジャイロトロン
 - 現状の1MW-5秒x4のシステムからのアップグレード
 - 2本の1MW-5秒管を1MW-100秒管に改造
 - 100秒電源2台を新設
 - 2系統は1MW-5秒のシステムのまま
 - 伝送系、ランチャー
 - 現状の直径31.75mmの導波管ラインを直径80.3mmの導波管に置き換える。
 - 新開発する2系統入射でトロイダル及びポロイダル方向に掃引可能なラン チャー2台を使用する。

まとめ

- ITERにおけるECHシステム
 - ジャイロトロン
 - ITERの要求を満たす1MW/800秒/効率55%の達成
 - ITERの運転間隔での繰り返し運転の実証
 - 伝送系、ランチャー
 - 大電力伝送効率試験の実施
 - 水平、斜め上ランチャー共に熱負荷、電磁力等、基本のパラメータを 満たす設計に成功
 - モックアップを用いた大電力試験の実施