高速点火レーザー核融合 加熱実験の進展

有川安信 大阪大学レーザーエネルギー学研究センター 博士後期課程1年 2010年3月11日 第13回 若手科学者によるプラズマ研究会¹

高速点火核融合加熱実験の進展 アウトライン

1. 高速点火とは?

2. 高速点火実験のための装置の概要

- 3. 加熱実験の展開
- 4. まとめ

レーザー核融合と磁場閉込め核融合

核融合反応の条件(エネルギー生成) 1. プラズマ温度 > 1億度 2. プラズマ密度x反応時間 > 10¹⁴ cm⁻³ s(核融合パラメータ)

日本原子力開発機構 JT60

大阪大 激光12号

高速点火方式により従来の中心点火の1/10の レーザーエネルギーで点火・燃焼の実現が可能

高速加熱のメカニズムについて

高速点火核融合 原理実証実験のゴール地点 FIREX(Fast Ignition Realization EXperiment)

DT

40

50

DT反応

20

DD反応

30

イオン温度 (keV)

D+T →n+α α粒子が周辺の高密度燃料部を加熱し、 連鎖的に核融合反応を引き起こす。

The Goal of the FIREX 第一期 : 5keV以上の加熱を実証する。 第二期 : コアサイズを大きくし、核融合エネルギー利得を実証する。

10³

10

高速点火原理実証から発電炉までのロードマップ

高速点火核融合加熱実験の進展 アウトライン

高速点火実験のためのレーザー装置

GEKKO XII 1~2 nsのパルス Nd:glass レーザー 2倍波(526 nm)にして使用 max 350J/beam ×12beam で稼働中

LFEX 1~10 psの短パルス Nd:glass レーザー チャープパルス方式 4beam構成で max 10kJ / 1 ps = 10PW! を目指して現在もチューニン グ中。

高速点火で使うターゲット

追加熱レーザー導入金コーン

・電子生成効率を上げるために高Z材料
・開き角度は30°か45°の2種類を使用。

燃料部: 重水素化ポリスチレン製カプセル *近い将来にはフォーム素材に液体DT染み込ませ冷却固 化させた、DTクライオターゲットに取り換える。

巨大な装置から発射されたレーザーがこんな小さなター ゲットに照射される。

高速点火核融合実験のプラズマ計測器

・発光位置を見る:X線ピンホールカメラ

- ・動きをみる:X線ストリークカメラ、X線フレーミングカメラ、 MIX(画像時間分解)、SIX(画像時間分解)、 超高速中性子シンチレーター、
- ・温度を測る:中性子ドップラー拡がり、X線分光計測、中性子数 ・密度を測る:X線シャドウグラフ、二次中性子、散乱中性子

高温、高密度のプラズマを

高時間分解能(10-100ps)、高空間分解能(10µm)で計測できる計測器が多数設置されている。

計測器 1: 核融合プラズマの動きをみる

±)

ILE Osaka

計測器 2 (新型): 超高速X線二次元画像計測法(MIXS法)

画像サンプリングを応用することで空間二次元計測が可能となる。 時間分解能20 psを達成。

計測器 3(新型):中性子で核反応の動きをみる

・中性子数が少ないショットでは高電子増倍管を用い、高感度化を図る。 Rise time 220 ps、このシステムでも中性子の生成ピーク時刻計測には50 psの分 解能が得られる。

・中性子数が多いショットではストリークカメラを用い、高速化を図る。 Rise time 20 ps以下、中性子の発生の時間履歴まで鮮明に計測できる。

計測器 5 (<mark>開発中</mark>): 散乱中性子でプラズマ密 度を測る

 $n + {}^{6}Li \rightarrow T + \alpha$ (4.8MeV) cross section

散乱中性子に着目した新しい計測手法が現在開発されつつある。 昨年レーザー核融合散乱中性子計測に特化した、超高速応答の⁶Liシンチレー ターの開発に成功した。

Y. Arikawa, et. al, Rev.Sci.Inst. Vol. 80, 113504. Nov. 2009

ILE Osaka

Y. Arikawa, et. al, Rev.Sci.Inst. Vol. 80, 113504. Nov. 2009

高速点火核融合加熱実験の進展 アウトライン

高速点火とは? 高速点火実験のための装置の概要 ・レーザー装置 ・ターゲット

3.加熱実験の展開 4.まとめ

1. 加熱実験の展開 2. 計測の問題点と解決策

高速点火加熱実験の展開

2009年以前の成果をまとめると・・・

・コーン付きターゲットを激光12号で爆縮して、燃料コアの生成を確認。X線計測により密度の計測に成功。

•2002年に当時のペタワットレーザーを用いて加熱原理 実証実験に成功した。 *追加熱(エネルギー最大 0.7PW)を入れることで、 1000倍の中性子増加を確認。

その後、点火実験のための超高強度レーザーLFEX (世界最高出力)の建設がはじまった。

7年間の建設期間を経てついにLFEXが完成し、2009年に 加熱実験が始まった。

高速点火加熱実験の展開1 LFEX パフォーマンステスト

最大1kJ、およそ10¹⁹ W/cm² の照射強度を達成。

高速点火加熱実験の展開2 爆縮と加熱タイミングの同時観測

流体シミュレーション、X線時間分解画像計測、高速シンチレーターによる爆縮と加熱 のダイナミクスを同時観測

加熱に対して中性子数の増大を確認

第65回日本物理学会年会 2010/03/21 に16件連続講演

5keV達成への第一ステップを達成!

*加熱効率が過去の実験や予測よりも低い事も明らかになった。 レーザーの特性の違いが原因であると考えられており、現在改善が急がれている。24

高速点火実験の天敵 : 高強度X線ノイズ

高速点火は超高強度レーザーによって電子ジェットを生成してコアを加熱する。 レーザーのエネルギーを上げるに従い、電子ジェットのエネルギー・量ともに増え、そ れに伴う制動放射X線も強くなってくる。

→高強度X線、電磁ノイズが大きくなりすぎて、計測系をおびやかしている。

中性子シンチレーターの信号例

フレーミングカメラの信号例

高強度X線ノイズに強い計測器の開発が求められている。

X線に強い計測器開発 1 鉛を置きまくる

多チャンネル中性子検出器 MANDALAには厚さ10cmの鉛のシールドを前面に 施している。

X線に強い計測器開発 2:反射型フレーミングカメラ

全反射ミラー導入後

液体中性子シンチレーターに酸素を溶存することによって、シンチレーション発光の遅い成分を劇的に減少させることに成功。

*詳細は 長井君の講演で

まとめ

・高速点火核融合は従来の中心点火に比べて小規模かつ高効率なレーザー核融合手法。
・LFEXレーザーが動き出し、加熱実験を開始した。
・2011年イオン温度の5keV加熱を目指しプロジェクト実験が進行中。
→いま、戦いの真っ只中!

最後に・・・ 今一度核融合エネルギーの重要性を考える

ILE Osaka

磁場かレーザーか?ではなく、 互いに協力して一刻も早くエネルギーを生み出すべき。 画期的な計測技術、ノイズ対策技術等があれば教えてください。

一刻も早く核融合エネルギーの実現を!