

球状トカマクにおける 加熱・制御技術

高瀬雄一 東京大学 大学院新領域創成科学研究科

第13回 若手科学者によるプラズマ研究会 (プラズマ加熱・制御技術の進展と展望)

2010年3月10-12日 日本原子力研究開発機構 那珂核融合研究所

球状トカマク(ST)とは

- ・ アスペクト比の低いトカマク (A < 2程度)
- ・ 小型装置で閉じ込めのよい高βプラズマが実現可能
- → 小型の燃焼プラズマ装置・核融合実証炉(デモ炉)実現の可能性

ST -

U.S. STCC Selected Three Mission Options, Taking Advantage of Attractive ST Features

<u>Three ST missions to advance</u> <u>fusion energy science during the</u> <u>ITER Era (~20 years)</u>

• High-Q Burning Plasma (BP)

Explore strongly coupled nonlinear plasma conditions ($f_{BS} \rightarrow 1, \beta \rightarrow ideal$ wall limit, etc.) prototypical of DEMO.

Fusion Nuclear Science (FNS)

Elucidate and resolve synergistic effects in science of fusion plasma and neutron material interactions, fuel cycle & power extraction in full fusion nuclear environment up to 1 MW-yr/m².

Plasma Material Interface (PMI)

Qualify candidate PFCs in long-pulse DD facility approaching conditions of a fusion nuclear device.

Attractive Features

- <u>Plasma</u>: high β_T limits, τ_{Ei} (>>τ_{Ee}), q_{CYL}
- <u>Device</u>: small (size × field × P_{FUS} × P_{aux}); high Φ_{DIV}, W_L
- <u>Discovery</u>: extend toroidal plasma regime and enhance understanding

	РМІ	FNS	BP
Q	0.01	0.8-1.5	10-20
P _{FUS} (MW)	0.2	19-75	300
R (m)	1.2	1.3	1.5
I _p (MA)	3-4	4-7	9-17
q _{CYL}	3	4-6	3
β _N	≤3	2-3.3	5-7
W_L (MW/m ²)	-	0.3-1.0	3
$\Phi_{\rm DIV}$ (MW/m ²)	varied	≤10	varied

核融合炉の効率を高めるにはどうすればよいか?

STによる高 β プラズマ安定性の実証

デモ炉と商業炉の設計例

$f_{BS} \sim 100\%$ 東京大学 *JT-60U* **—** Nearly constant current (\sim 0.54 MA) is maintained by BS current with constant I_{cs} and counter-NBCD current for > 0.5 sec. Fully bootstrap-driven plasma ($f_{BS} \sim 100\%$) is realized. Internal loop voltage $V_{loop}(r) \sim 0 V$, $I_{tot} = 543$ kA, $I_{ind} = -5$ kA, $I_{BD} = -35$ kA, · Durlation 588 KA self-sustained phase is limited by slow confinement degradation. Both W_{dia} and I_p decrease gradually after 5 sec. perp. and counter NB only B_T=4T const. I_{cs} E046687 (MA)0.6 mn, N.m. A. 0.4 ٩ E046687 5 W_{dia} (MJ) 1.5 @ 4.6 s 0.3 **M** M M M M M total (MSE 543 kA [MA/m²] 0.2 β 0.1 0 -2 inductive -5 kA (kA) 0 beam driver $S_n^{n}(10^{14} \ s^{-1})$ -35 kA -0.1 0.8 0.2 0.4 0.6 0

6

5

Time (sec)

3

ρ

CS-less Start-up Demonstrated in JT-60U

ELM control

□ 6 + 6 internal array - \leq 2kA, 4 turn coils for ELM control (n = 3). Additional 6 coils will be installed in 2010 to allow n = 4, n = 6

n=3 H-mode experiments - Type III ELMy / ELM-free H-mode

MAST

ELMs stimulated in ELM-free regime

ELM character changed

In the standard sequence for the L-H transition

L-mode – Dithering – Type III ELMs – ELM-free – Type I ELMs

Power across separatrix P_{sep}

the application of the coils is equivalent to a small drop in $\rm P_{sep}$ wrt. $\rm P_{LH}$

Heat flux profiles during ELMs

MAST

Evolution of heat flux profiles during an ELM in connected DND (1 frame every 72 ms):

Heat flux profile in inner divertor only slightly modified during an ELM

□ Filamentary structure clearly observed in outer divertor

□ E_{outer} is between 15 and 40 times higher than E_{inner}

Off-axis NBCD

MSE confirms j(r) broadening during off-axis NBCD

□ HAGIS (non-linear drift-kinetic δf code) calculations of fast ion diffusion arising from n = 1 fishbone activity are consistent with experiment □ Anomalous fast ion diffusion $(D_b \sim 0.5m^2/s)$ needed to match neutron rate and stored energy – linked to n = 1core MHD (fishbones)

MAST

Sawtooth control with off-axis NBI

MAST

Scan the deposition location by moving plasma vertically

- Sawtooth behaviour affected by deposition location relative to q=1
- **Passing ion effects dominate over change in NBCD**, v_{ϕ} shape etc

MAST Upgrade

Objectives

□ Address gaps in the physics basis of an ST CTF

Provide influential input to EFDA missions in support of ITER

□ Contribute to development of divertor concepts for DEMO

- Increased heating power (NBI, EBW)
 - adaptable system providing control of j(r), p(r), v(r)
- Relaxed current profile
 - fully non-inductive operation possible
- □ Increased TF, increased solenoid flux
 - higher current, longer pulse routine operation
- Improved exhaust and density control
 closed cryopumped divertor

NSTX is the most capable Spherical Torus (ST) in the world fusion program

• 59 PPPL/PU researchers, 91 from 29 other U.S. institutions, 45 international

HHFW Heating Efficiency Improved with B_T

• NSTX High-Harmonic Fast Wave (HHFW) heating and current drive research utilizes sophisticated ICRF launcher:

- · 12 strap antenna, 6MW capability
- 6 independent transmitters
- Real-time control of launched k_{II} from 0 to 14m⁻¹
- Achieved high T_e =3.6keV (nearly double the previous value) in current drive phasing for first time at B_T = 5.5kG
- Higher B_T and k_{\parallel} improved HHFW core electron heating reduced edge parasitic loading

NSTX clearly separates edge HHFW losses from core deposition

AORSA $|E_{RF}|$ field amplitude for -90° antenna phase case with 101 n_{ϕ}

- Waves propagate around plasma axis in + B₀ direction

 – similar to GENRAY rays
- Wave fields very low near inner wall
- RF SciDAC project will include edge loss mechanisms in codes
- NSTX is good platform for benchmarking advanced RF codes

Edge power loss increases when perpendicular propagation onset density is near antenna/wall

 $\Box \Delta W_e$ at - 8 m⁻¹ about half ΔW_e at 14 m⁻¹ for the first pulse

- ∆W_e at 8 m⁻¹ and 14 m⁻¹ comparable for the last two **RF** pulses
- Density in plasma edge is high for first pulse and low for last two pulses
- Edge density affects heating when above onset density close to antenna, consistent with surface wave propagation near antenna/wall contributing to RF losses

Revisiting possible parametric decay effects in plasma

edge Poloidal heating in edge may eject energetic edge ions

- Edge ions are heated to hundreds of eV: CIII, CVI, Lill, and Helium
- Emission location for CIII and CVI is ~ 150 cm, just inside separatrix
- Edge ion heating may result in loss of energetic ions to SOL and the diver

NSTX

Wall-stabilized High β Plasma

NSTX

- Critical rotation velocity is consistent with Bondeson-Chu $\Omega_{\rm crit} = \omega_{\rm A}/(4q^2)$

R(09-3) Sustained-high elongation and wall-stabilized operation has been extended from $\beta_T = 15-20\%$ to 20-30%

Lithium wall conditioning improves pulse length, increases τ_E , suppresses ELMs, but shows impurity accumulation

Now focusing on main-ion and impurity density control

NSTX

ELM triggering using n=3 perturbations is being optimized to control density and radiation, maintain high confinement

Plasma vertical position "jogs" can also trigger ELMs (ELM triggering with jogs observed on JET, ASDEX-U, TCV)

- Just beginning to explore this on NSTX...
- Thus far, triggering only works for $dr_{sep} < \sim -1cm$

NSTX

Dual LITERs Replenish Lithium Layer on Lower Divertor Between Tokamak Discharges

- · Electrically-heated stainless-steel canisters with re-entrant exit ducts
- Mounted 150° apart on probes behind gaps between upper divertor plates
- Each evaporates 1 40 mg/min with lithium reservoir at 520 630°C
- Rotatable shutters interrupt lithium deposition during discharges & HeGDC
- Withdrawn behind airlocks for reloading and initial melting of lithium charge
- Reloaded LITERs 6 times during 2009 run (Mar Aug): ~300g deposited

Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

No lithium (129239); 260mg lithium (129245)

Suppression of ELMs Occurs By Lengthening and **Coalescence of ELM-free Periods**

- Lithium deposited (0) (accumulated) (mg)
 - Shots with $I_{p} = 0.8 \text{ MA},$ $B_{T} = 0.5T$, $P_{NBI} = 4 MW$
 - All shots remain in H-mode
 - ELM suppression was predicted through changes in location of current density gradient with respect to mode rational surfaces (Zakharov, 2006)

Liquid Lithium Divertor to Test Pumping Effectiveness LLD Plates To Operate at Lithium Melting Temperature (200 - 400 °C)

H. Kugel, R. Kaita (PPPL) et al.,

0.165 mm Mo flame-sprayed with 45% porosity on a 0.25 mm SS barrier brazed to 1.9 cm Cu.

Moly-Coated LLD Plate R. Nygren (Sandia NL) et al.,

- LLD installation started for FY 2010 run (completion next few weeks)
- Enhanced LLD to achieve density control improved diagnostics and improved fill system - to be installed for FY 2011 run

Increased auxiliary heating and current drive are needed to fully exploit increased field, current, and pulse duration

- Higher heating power to access high temperature and β at low collisionality Need additional 4-10MW, depending on confinement scaling
- Increased external current drive to access and study 100% non-inductive – Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas
- Proposed upgrade: double neutral beam power + more tangential injection

 ITER-level high-heat-flux plasma boundary physics capabilities & challenges
 More tangential injection → up to 2 times higher efficiency, current profile control

Major Facility Upgrades Planned to Bridge the Device and Performance Gap Toward Next-Step STs

LTX discharges will be wall-limited on the heated, lithium-coated shell

Shell was designed for 500 °C operation to promote wetting of the SS surface by lithium

- ANSYS modeling for 500 °C LTK operation
- Shell radiating into the vacuum
 chamber
 - 29 kW heater power required
 - Centerstack, vessel wall water cooled
 - Centerstack is fitted with heat shield
 - Passive; polished stainless steel over silicon-bonded mica
 - Shell tested to 200 °C
 - Vacuum vessel did not require water cooling; ∆T < 30 °C
 - Centerstack surface $\Delta T < 2 °C$
 - Required ~10% of heater power
 - Projected *continuous* temperature limit: ⇒560 °C

STW2009

TST-2 Spherical Tokamak and Heating Systems

2-Strap HHFW Antenna (only 1 strap was used)
21MHz, up to 400 kW (up to 30 kW was used)

TST-2 -

X-mode launch horn antenna for ECH 2.45 GHz, up to 5 kW

PDI Spectra Measured by Reflectometer

TST-2 -

Correlation Between PDI and Electron/Ion Heating

↔ • Less electron heating
• More ion heating

Stronger PDI

3 Phases of I_p Start-up by ECH

Preparation for LHCD Experiment

200 MHz transmitters (200 kW x 4, from JFT-2M)

- Initially, the combline antenna used on JFT-2M, adapted for use on TST-2, will be used to excite a unidirectional fast wave with n_{ϕ} = 12 (corresponding to n_{\parallel} = 5).
- Direct excitation of the LH wave is planned in the future.
- The fast wave can mode convert to the LH wave and drive current.

I_p scan at low n_e

 $n_{e0} = 1 \times 10^{17} \text{ m}^{-3}$; $T_{e0} = 1 \text{ keV}$; $n_{||0} = 7$; $\theta_{ant} = 0^{\circ}$

Core absorption expected only at very low n_e (< 5 × 10¹⁸ m⁻³) and I_p (< 50 kA).

n_{ll0} scan at high I_p

 $n_{e0} = 1 \times 10^{18} \text{ m}^{-3}$; $T_{e0} = 1 \text{ keV}$; $I_p = 100 \text{ kA}$; $\theta_{ant} = 0^{\circ}$

At high plasma current (100 kA) only low n_{\parallel} LHW can reach the plasma core.

Antenna location scan

 $n_{e0} = 1 \times 10^{17} \text{ m}^{-3}$; $T_{e0} = 1 \text{ keV}$; $I_p = 10 \text{ kA}$; $n_{||0} = 7$

Wave excitation from the low field side midplane is adequate.

ц.

Low Aspect ratio Torus Experiment (LATE) is exploring non-solenoidal start-up by ECH/ECCD

Device Parameters:

Vacuum vessel : diameter = height = 1m Center post : diam. = 11.4 cm Toroidal coils : Bt = 0.48 kG (R=25cm), 10 s Bt = 1.15 kG (R=25cm), 0.3 s Vertical coils: 3 sets Vertical position control

Microwaves:

2.45 GHz 5kW CW x 2, 20kW 2s x 2 5.0 GHz 200kW 0.07s

Diagnostics:

Magnetics (17 Flus loops), 70GHz interferometer (3 chords), SX cameras (4-poloidal, 1toroidal), X-ray PHA (CdTe), Fast visible camera, Langmuir probes, Spectrometer

Hard X-ray energy range evolves as Ip ramps up.

Equilibrium Pressure Profiles $(p_{\parallel}, p_{\perp})$ deduced by anisotropic pressure model for the 20 kA plasma

In the stage III, high N// EB waves overdrive electrons from the thermal tail towards the energetic range well beyond the runaway velocity against the counter Electric force.

$$N_{II} = \frac{\mathbf{N} \bullet \mathbf{B}}{B} = \frac{N_{\phi}B_{\phi} + N_{P}B_{P}}{B}$$
$$\cong N_{\phi} + \frac{N_{P}B_{P}}{B}$$
$$N_{\phi} = \frac{N_{\phi0}R_{0}}{R}$$

Toroidal wave length decreases as $\propto R$. Then N// increases as $\propto 1/R$, significant in the low aspect ratio plasma.

Wave force that pushes resonance electrons parallel to the magnetic field is proportional to N//.

Electromagnetic waves (O and X modes) can not have high N//.

EB waves are an electrostatic mode and can have high N//.

60 #5783 R=0.68m 40 I_P (kA) 20 B_T=0.25T @ 0.64m P_{RF} (kW) 100 50 8.2GHz **0.0** 0.5 1.0 1.5 Time (sec) The experiments #6673 started on Oct. 2008. I_P (kA) $P_{RF}\left(kW\right)$ New Antenna for EBW and expected driven current 100 50 10⁻⁴ 2.0 – Current Density Profile [arb.unit] Ŏ.0 0.2 0.4 0.6 0.8 1.0 I [total current] / P [power] = 0.11 A/W Time (sec) 1.5 Flux surface in OH + RF plasma R=0.55m 1.0 a=0.3m 0.2 0.5 A=1.83 0.0 I_P=40kA 0.0 0.0 0.2 0.1 0.3 *r* [m] -0.2 -B_T=0.15T P_{RF}=0.06MW 0.8 0.2 0.4 0.6

QUEST Experiment

a=0.4m A=1.78 P_{RF}=0.2MWX2

OH plasma and RF maintained plasma

- Current is injected into the existing helical magnetic field
- High I_{inj} & modest B \Rightarrow filaments merge into current sheet
- High I_{ini} & low B \Rightarrow current-driven B₀ overwhelms vacuum B_z
 - Relaxation via MHD activity to tokamak-like Taylor state w/ high toroidal current multiplication

 $B_{T} = 10 \text{ mT}, B_{z} = 5 \text{ mT}$

Magnetic helicity injection is current drive

Magnetic helicity: linkage between magnetic fluxes

$$K \equiv \int \mathbf{A} \cdot \mathbf{B} \ dV$$

K is conserved in magnetized plasmas, decaying on resistive timescales.

In tokamaks, K is proportional to the product $I_{TF}I_p$. Increases in K correspond to increases in I_p .

Driving current on open field lines is helicity injection

DC helicity injection startup on PEGASUS utilizes localized washer-gun current sources

- Plasma gun(s) biased relative to anode:
 - Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_N A_{inj}$$

 V_{inj} - injector voltage B_N - normal B field at gun aperture

 A_{inj} - injector area

- Plasma guns have geometric flexibility
- Gun-based system can be scaled to larger devices, such as NSTX

Taylor relaxation criteria also limits the sustainable I_p for a given magnetic geometry

Helicity balance in a tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, \mathrm{d}^{3} \mathrm{x} - 2\frac{\partial \psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot \mathrm{d} \mathbf{s}$$

- Assumes system is in steady-state (dK/dt = 0)
- I_p limit depends on the scaling of plasma confinement via the η term

Taylor relaxation of a force-free equilibrium:

$$\nabla \times B = \mu_0 J = \lambda B$$

$$\longrightarrow \quad \frac{\mu_0 I_p}{\Psi} \le \frac{\mu_0 I_{inj}}{2\pi R_{inj} W B_{\theta,inj}} \implies I_p \le \left| \frac{C_p}{2\pi R_{inj} \mu_0} \frac{\Psi I_{inj}}{W} \right|^{1/2}$$

Assumptions:

- Driven edge current mixes uniformly in SOL
- · Edge fields average to tokamak-like structure

Maximum I_p achieved when helicity and relaxation limits are satisfied simultaneously

STを含めた核融合開発のロードマップ案

ST

