タングステンにおいて重水素,炭素,ヘリウムイオン 同時照射が及ぼす重水素滞留挙動への影響

静岡大·理·放射研·奥野大矢研究室 修士1年 押尾純也

背景

実験手順

試料 多結晶タングステン 10 mm ×0.5 mm (アライドマテリアル社製 900 ℃にて歪み取り加工)

各イオン同時照射におけるD₂ TDSスペクトル 各イオン同時照射における重水素滞留量

まとめ

実験手順

試料 多結晶タングステン 3 mm^{φ×0.1 mm^t (アライドマテリアル社製 900 ℃にて歪み取り加工)}

各フルエンスにおける He^+ - D_2^+ 同時照射のTEM像

- ・ 1.0×10²⁰ D m⁻²: Dislocation loopの形成
- 1.0×10²¹ D m⁻²: Dislocation loopが増加・成長
- 5.0×10²¹ D m⁻²: Dislocation loopの増加・成長 He bubbleの形成

フルエンス上昇に伴いDislocation loopの成長およびHe bubbleの形成

各フルエンスにおける C^+ - D_2^+ 同時照射のTEM像

- 1.0×10²⁰ D m⁻²: Dislocation loopが形成
- 1.0×10²¹ D m⁻²: 欠陥の蓄積は飽和状態に到達

低フルエンス時においても多くの<u>Dislocation loop</u>が形成 照射初期段階において<u>Dislocation loop</u>の形成が飽和

各フルエンスにおける C^+ -He⁺-D₂⁺同時照射のTEM像

- 1.0×10²⁰ D m⁻²: Dislocation loopの形成
- 1.0×10²¹ D m⁻²: Dislocation loopの成長、He bubbleの形成
- 5.0×10²¹ D m⁻²: 高密度のDislocation loop, He bubbleが存在

Dislocation loop, He bubbleの成長

フルエンス増加に伴う各イオン同時照射でのTEM像

照射初期段階においてC⁺を含む同時照射において 多くのDislocation loopが形成

すべての試料においてDislocation loopの形成 He⁺を含む同時照射においてHe bubbleの形成

3種イオン同時照射試料に関してHe+, C+照射双方の 重水素捕捉サイトの形成が示唆

まとめ

水素同位体・炭素・ヘリウム同時照射時における 水素同位体滞留挙動の解明

> C⁺-D₂⁺よりも重水素滞留量が増加 He⁺-D₂⁺よりも重水素滞留量の減少

3種イオン同時照射試料に関してHe⁺, C⁺照射双方の 重水素捕捉サイトの形成が示唆

3種イオン同時照射時において、C+, He+照射による 重水素捕捉サイトの形成と同時に、 C+照射によるWのスパッタによって重水素滞留量が減少する。