第14回若手科学者による研究会 2011.3.8 @JAEA 那珂研

原型炉におけるダイバータ問題 の解決へ向けて

ダイバータ設計の難しさ ・二面性(熱/粒子、物理/エ学) ・それぞれの課題に未解決の問題が山積				
	索办	粒子		
物理	熱源:steady flux ELM (type I, II, III,) thermal quench SOL:熱流幅 放射冷却: detach/semi-detach/attach	粒子種:D, T, He, Z 粒子輸送: ↑ 圧縮・排気: divertor 形状 排気速度(特に, He排気)		
工学	熱流束:許容熱流束 信頼性:薄肉配管 冷却管とアーマー接合	損耗: sputtering (D, T, He, Z) 欠陥: イオン/中性子照射効果 (blister/バブル形成, 核変換)		

イオン/中性子照射相乗効果

crack形成

欠陥による **к**低下影響

OUTLINE

▶ダイバータエ学設計の現状

▶プラズマ設計の考え方

▶ダイバータの代替概念案

1. ダイバータエ学設計の現状

炉設計から見たダイバータ問題

▶物理と工学の取合い

何MW/m²で取り合うか?

	取合条件	現状
div	物理の 守備範囲	物理
	↓設計領域	
	エ学の 守備範囲	工学

ITERから原型炉へ

工学の限界から出発 ← 定量的議論が可能

原型炉SlimCSの設計例

設計qdiv 目標値の変遷

EUのダイバータ概念 Finger Type (Heガス冷却) Finger unit W 18 mm W alloy Steel **Tungsten tile** HT brazing 1600 8 MW/m² 12 MW/m² W/steel Max. thimble temperature [°C] W-alloy thimble He transition 1400 600°C piece 10 MP-**HEMJ ODS EUROFER structure** 1200 Reference 700°C 1000 (a) 800

20 µm

8

Mass flow [g/s]

4

12

16

2. プラズマ設計の考え方

ダイバータに、なぜ厳しい条件を課すのか? すべての熱をメイン領域で放射したら? $P_{in}/S_{FW} \sim 1 WM/m^2$ S_{FW} ~ 700 m² プラズマ入力: P_α ~ 600 MW ← P_{fus} ~ 3,000 m² **P**_{CD} ~ **100 MW** P_{in} ~ 700 MW

Pin ≈ Prad が成り立つ条件 $W\left(=\frac{3}{2}\int p\,dV\right) = (P_{in} - P_{rad})\tau_{E} \quad \Longrightarrow \quad \tau_{E} \approx \infty$

FFHR2m2 (Super Dense Core) 超高密度n_e(0) ~8×10²⁰ m⁻³とし、~85%をメインで放射

しかし、高密度運転は避けたい

スパッタリングの抑制 閾エネルギー $E_{th} > \phi_{sheath} + E_{ion} \sim 8T_{div}$ $\sim 3T_{div} \sim 5T_{div}$ 対向材料はW self-sputteringを考慮して Tdiv < 10 eV 10⁻¹ 10¹ 1 1 1 1 1 1 1 1 1 1 1 1 1111 1 1 1 1 1 1 1 1 1 1 Incident ion : D+ F Target : W w 10⁰ Be Sputtering Yield 70-3 SiC Sputtering Yield 10^{-1} т 10⁻² D 10⁻³ E 10⁻³ • 10^{-4} 10^{-4} 10² 10¹ 10³ 10^{2} 10³ 10^{1} 10^{4} 10⁵ Energy (eV) Energy (eV)

既存概念の展望をシミュレーションで検討

Divertor simulation:現状では、~15 MW/m²

3.ダイバータ代替概念案

ダイバータ新概念の必要性

power handlingの難しさの指標

Psol ← SOL入力 R ← 大半径

	Psol/R	Psol	R		
JT-60	~9	~30 MW	3.4 m		
ITER	~16	~100 MW	6.2 m		
原型炉	~90	~550 MW	~6 m		

Snowflake Divertor

Flux expansion --> 大

Snowflake Divertor

放射分布の計算例 <u>NSTX (Princeton)の例</u> 点線: standard Standard **Snowflake** P_rad (kW/m^3) 実線: snowflake 0.7 F Araon impurity 100 E 200 (m) Z 5000 0.6 PE3I 0.5 135498 0.383 s Z (m) -2 135481 0.414 s 0.4 Pmax, [MW/m²] 1.0 1.5 1.0 1.5 0 0.5 0 0.5 R(m) R(m)Ê 0.7 Ξ^{0.} 0.3 #135498 00383_0 #135481 00414_0 N 0.6 N 0.6 0.2 0.5 0.5 Snowflake 0.4 0.4 0.1 0.3 20 0.3 0.2 0.3 0.4 0.5 0.6 0.7 0. 0.2 0.2 R (m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.6 0.8 1.0 R (m) 0.2 0.4 0.0 R (m) Impurity fraction, % 原型炉へ向けた課題 熱負荷低減は1/2~1/3 PFコイルを遠ざけて、Snowflakeになるか?

■ He排気の低下 (flux expansionとの両立性) 同様に、真空排気特性?

Super X Divertor (SXD)

null点を片側に2つ持つ磁場配位

ダイバータ板の設置~2R (受熱面積2倍)

Super X Divertor (SXD)

SXDの特長

- Inner divertorへの影響がない
- Cross field transport

→ SXDの熱流束低減性能向上

■ 炉心から遠く、中性粒子圧力が高い → He灰の排気にメリット

原型炉へ向けた課題

■ 中性子遮蔽

■ 長いダイバータ室. 製作可能か?

液体ダイバータ概念

Convective Liquid layer Design

液膜流

プール型

カーテン式

液体ダイバータの将来性?

Pros:

損耗がない!

Cons:

- 液体表面は高温 ---> 蒸気圧が心配
- 大量に流すと熱利用が困難
- 液体は何? 金属は流れない(膨大なMHD圧損)

まとめ

- ▶ ITERの熱負荷条件は10 MW/m²、原型炉では~数MW/m²
- ▶ ダイバータは原型炉実現へ向けてクリティカルな課題
 - 物理:既存概念の限界追究、代替概念、計装制御の視点 工学:信頼性のある概念(歩留り、大量生産)、耐久性