14th Plasma Workshop for Young Scientists Naka Fusion Institute, Japan Atomic Energy Agency

Hall MHD in a Magnetospheric, Weakly Ionized Plasma Device

Germán Vogel Yoshida Laboratory

Motivation

- Hasegawa (1987) inspired in Jovian magnetosphere for fusion confinement which can yield β >> 1 free from disruptions.
- Up to now, dipole devices have focused on levitation of a central ring within compact geometry away from dipole approximation.

• Study of Hall MHD hierarchy scales essential to understand phenomena in weakly ionized plasmas.

A. Hasegawa, Comments Plasma Phys. Control. Fusion 1, 147 (1987).

Objectives

- Design and construction of an experimental device for study of planetary-like magnetospheric plasma configuration at dipole approximation.
- Assessment of Hall MHD regimes and Kolmogorov scales of energy dissipation applicable for weakly ionized plasma, and achieve experimental reading.

Kolmogorov scales Important to understand the nature of phenomena involved, via the mechanisms of energy dissipation.

Weakly Ionized Plasma

• Electron dynamics,
$$0 = -\vec{\nabla} p_e - e n_e \left[\vec{E} + \frac{\vec{V}_e \times \vec{B}}{c} \right] - v_{en} \rho_e \left(\vec{V}_e - \vec{V}_n \right)$$
 (1)

Ion dynamics,

$$0 = -\vec{\nabla} p_i + e n_i \left[\vec{E} + \frac{\vec{V}_i \times \vec{B}}{c} \right] - \nu_{in} \rho_i \left(\vec{V}_i - \vec{V}_n \right)$$
(2)

$$\rho_{n} \left[\frac{\partial \vec{V}_{n}}{\partial t} + \left(\vec{V}_{n} \cdot \vec{\nabla} \right) \vec{V}_{n} \right] = -\vec{\nabla} p_{n} - v_{ni} \rho_{n} \left(\vec{V}_{n} - \vec{V}_{i} \right) - \rho_{n} \vec{\nabla} \phi_{g} + \mu \nabla^{2} \vec{V}_{n} \qquad (3)$$

Neutrals under Lorentz,
$$\rho_n \left[\frac{\partial V_n}{\partial t} + \left(\vec{V}_n \cdot \vec{\nabla} \right) \vec{V}_n \right] = -\nabla p + \frac{J \times B}{c} - \rho_n \vec{\nabla} \phi$$

$$= -\nabla p + \frac{\vec{J} \times \vec{B}}{c} - \rho_n \vec{\nabla} \phi + \mu \nabla^2 \vec{V}_n \qquad (4)$$

on defining
$$\vec{V}_n - \vec{V}_i = \frac{\nabla(p_i + p_e)}{\nu_{in}\rho_i} - \frac{\vec{J} \times \vec{B}}{c \nu_{in}\rho_i}$$
, $\vec{J} = -e n_e \left(\vec{V}_e - \vec{V}_i\right)$

Krishan and Yoshida, PoP. 13 (2006)

Hall and Ambipolar Diffusion Terms

- In weakly ionized plasma, dissipation mechanisms depend upon (1) plasma properties, (2) energy injection rate.
- Description of weakly ionized plasma dynamics,

where
$$\epsilon_H := \alpha \frac{c/\omega_{pi}}{L_0} = \alpha \frac{\delta_i}{L_0}$$
, $\epsilon_\eta := \eta \frac{t_0}{L_0^2} = \frac{\eta}{L_0 V_0}$, $\epsilon_A := \epsilon_H \frac{\omega_{ci}}{v_{in}}$, $\epsilon_\mu := \mu \frac{t_0}{L_0^2} = \frac{\mu}{L_0 V_0}$

Krishan and Yoshida, Mon. Not. R. Astron. Soc. 395, (2009).

Reynolds Number and Kolmogorov Scales

• Reynolds number as ratio of advective and dissipative terms.

Reynolds Number and Kolmogorov Scales

- Reynolds number as ratio of advective and dissipative terms.
- When energy injection rate is specified, and plasma parameters defined, we can determine Kolmogorov scales respective to each dissipation mechanism,

Dissipation mechanism	MHD regime ($\epsilon_{_H}K\!<\!1$)	Hall MHD regime ($~\epsilon_{\rm H}K\!>\!1~$)
Viscosity	$K_{\mu} = \xi^{1/4} \epsilon_{\mu}^{-3/4}$	$K_{\mu H} = (\epsilon_{H}^{-1})^{1-q} K_{\mu}^{q} (<\!K_{\mu})$
Resistivity	$K_{\eta} = \xi^{1/4} \epsilon_{\eta}^{-3/4}$	$K_{\eta H} = \epsilon_H K_{\eta}^2 (>K_{\eta})$
Ambipolar	$K_A = \xi^{1/2} \epsilon_A^{-3/2}$	$K_{AH} = \epsilon_H^{-2} K_A^{-1} (<\!K_A)$

Table 1. Energy dissipation scales

Krishan and Yoshida, Mon. Not. R. Astron. Soc. 395, (2009).

Dipole Confinement Approach

Tokamak, Spheromak

 $\beta \sim 1$

Dipole

β > 1

negative NC effects divertor heat load tritium blanket non steady state

no NC effects large flux expansion advanced fuels steady state

A new experimental device

- No levitating coil eases use and allows continuous operation.
- Supported magnet, it is a simpler task to generate E field in order to induce plasma flow.
- Dipole approximation can be examined and provide conclusions for planetary magnetospheres.
- Examine neutrals under Lorentz force using low-ionized plasma.
- May also serve to contrast Hasegawa's predictions vs RT-1 empirical observations.

Experimental Setup

- Nd permanent magnet mounted on a steel rod, at half plane of 2.45 GHz ECH microwave port.
- To allow large flux expansion, $B \propto r^{-3}$

•
$$r_{M} / r_{vac} \sim 10^{2}$$
 , $h_{M} / h_{vac} \sim 10^{2}$

• $B_M = 0.5 T$

		Br (T)	Hci (kA/m)	BH (kJ/m³)	Tc (°C)	
	Ferrite	0.2~0.4	100-300	10-40	450	
	SmCo	0.8~1.1	600~2000	150~200	250~700	
	NdFeB	1.0-1.4	750-2000	300-400	200-400	
Table 2. Rare-earth and ferrite magnets						
1.1.1.1.1.1.1.1.1		111			in the magne	
0	1					

Figure 1. Experimental device.

Magnetic Field Calculations

Setting Up & Reachable Pressure

Foundations of Vacuum Science, Lafferty (1998)

Figure 3. Chamber and set up

Expectations

• Over distance,
$$\rho_i / \rho_n$$
 via $\frac{n_i}{n_n} = 2.4 \times 10^{15} T^{3/2} \frac{n_{Na}}{n_i n_n} \exp(-U_{Na} / K_B T)$ (7)

- Over energy injection rates, $K_A/K_{\eta,\mu}$ and K_{η}/K_{μ}
- Choosing parameters at normalization distance where to estimate injection rate.

Summary and Conclusions

- A new device expects to confine plasma testing the dipole approximation and Hasegawa requirements.
- Inspiration in magnetospheric empirical observations of natural high- β confinement.
- Looking for experimental confirmation of expected Kolmogorov scales and profiles.
- Towards the implementation of diagnostics and electric field.