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1.Introduction
Impurity transport in the LHD edge plasma

§ Carbon density in the ergodic layer (EMC3)
0.1 | 1 10 [1018m~3]

low density casen; cps = 2 x 101°m=3  high density casen, cps = 4 x 1019m—3
[M. Kobayashi]

T Impurity screeninglueto the parallel flow is found on high density discharges.

T It could reduce the accumulation of impurity in the core.
T However, ionization and transpotffects of divertor plasmas are not involved yet.

divertor leg




LHD boundary plasma

§ Three characteristic regions in boundary plasma
T Ergodic layer = | EMC3

M. Kobayashi et al., J. Nucl. MateB63-365, 294 (2007)
T Stochastic magnetic fields
T Cross-field diffusion and parallel transport
{ Interactions
1 Divertor leg = | Fluid code| (EMC3 in future)
G. Kawamura et al., J. Plasma Fus. RB42010) S1020
+ Parallel flow dynamics
1 Interactions with neutrals
T Recycling
§ Interactions
T Impurity around divertor plates = | ERO ) . |
G. Kawamura et al., Contrib. Plasma Phy&,(2010) 451 inboard ' 1m
¥ Impurity transport Polidalcross section of LHD
T Sputtering
T Redeposition

divertor plate
ergodic |ayer




2. Impurity transport simulation in LHD diverter
ERO code (erosion and redeposition)

§ Monte Carlo simulation of impurity redeposition on the LHD first wall

T We employed the ERO code to investigate impurity dynamics in LHD divertor.
A. Kirschner et al., Nuclear Fusion0, 989 (2000)

T Spatialdistribution and deposition profile of impurities are available.

T Impurity particles are sputtered from the plasma facing wall and traced in the sit
ulation by using Newton’s equation of motion with various forces; electromagnet
force, friction and thermal forces given by a fixed background plasma.

T Atomic processes such as ionization and dissociative recombination yield varic
carbon species; C,"0C%*, -+, CH, CH}, - - -.

Input:
Ny T-l-,l'-'
geometry PFC (substrate Be, C, W, Mo, ...




Configuration of the LHD divertor

§ 3D illustrations of the LHD core plasma

A simul ation box

§ 2D simulation box o8—m—m
: . : simulation box taken from
T The simulation box Is chosen to be normalto 0.7} aCAD diag_rM
the divertor plate. 0.6} S

+ With the aid of the up-down symmetry, the =°°f

lower half of the plane is employed as the sim- ?gi .(4Sy /

ulation box. 0 —\/_ B

T The impurity particles are reflected at the up- 01| divertor

|at y
per boundaryz = 0.4. oL ® ™
04:03:02:01 0 0102 03 04
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Physical models

§ Major components of ERO

T Transport of impurity particles in the plasma

¥ Newton’s equation of motion
1 collisional effects with the background plasma
1 database of ionization and recombination rates (ADAS)

— These core components are available for any devices.
T Sputtering model

1 Bohdansky-Yamamura model and SDTimSP code for physical sputtering
1 Roth model or externaly given constant yield for chemical sputtering

— Device-independent, but many uncertainties such as incident-angle effect.
T Background plasma and surface geometry
+ magnetic field

1 plasma profiles of, Te, T, v and gradients of, Te andT;
Parallel electric field is calculated from these gradients.

1 wall configuration and grid generation

— Modeling is necessary to apply the code to a new device.



Plasma modeling of the divertor leg*

§ Modeling and simulation of the divertor plasma

1 Parallel dynamics is dominant on the diverter plasma.

1 Braginskii equations along a flux tube is good approximation.

T Interaction between plasma and neutral particles determines plasma profile.

potential ~1lm [MFP
Particle flux L .
Energy flux |onization
Charge exchange
Ergodic layer Collisonal presheath
(SOL)

— —

4—"

~1mm | ~10pum

(D

ImpUriti
-

Magnetic: Debye

presheath, sheath

—

eV

3D ﬁuid simulation 1D Fluid modeling 1D PIC simulation

*G. Kawamura et al., J. Plasma Fus. Res., 5 (2010) S1020



1D fluid equations of divertor plasma

Equilibrium equations solved numerically

dgs[nv]
d% [minv2 +n(Te + T-)]
o3¢
ds
; [mi”v3 + §rlvT- — K ﬁ
ds| 2 "2 ' "lgs
dis lgnUTe * Qiim
1
Clim

Sn,
Sp,
dnte  o71rdle_ 1
ds ds Tl
n
—enbd¢ S (Te —T,) + Sg;j,
ds
d¢ Snbn 2
en bis Me (Te = Tj) — Lrimpn” + Sge
1 .
dTe + p— electronheat flux limit (@ = 0.15)

~Kled

S: spatial coordinate alonB, n: plasma densityng = n; = n), v: parallel flow velocity,
Sn: particle sourceTe andT;: electron and ion temperaturess: momentum source,
ki- 1on heat conduction coeflicierfgj: ion energy sourceqe: electron parallel heat
conduction coefficient;e: e-e collision time,L = L(Tg): radiation cooling #icient,
Sge electron energy source.



Neutral model

Recycling and cascade processes of hydrogen

Wall surface

| release
H> molecules

| dissociation
H atoms

g 1Z, CX, recombination
H* ions

| surface recombination
Wall surface
n* : downstream particle.

N~ . upstream particle.
Equilibrium equations

dnm

ds

Vic

+

VCX nCX X VCX Vm nm
—@E— <G

Charge exchenge Recycling
@—
+
V.  Vq nd Ng Vg

Recombl nation Dissociation @

O o
o
Upstream plasma +—> Wal|

~({og1w) + {og20))Nmn,
dng dnt
+Ucx CIIEX = .. iUrcd—;C =
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Plasma profile — an example

§ Plasma and neutral profiles
T Used parameters:

Tm = 600 K,

+ Calculation time:

1.5
& 1.25¢ ~molecule
£ 4] dissociation
Ha 0751 charge exchenge
= 0.5}
0.25}
25 26 27 28 29 3

|p:3[m], (,0:800,

no = 0.5x 101 [m~9],
Qp = 10 [MW/m?].

0.2~0.5 seconds on Core2Qua
machine (Q9300 2.5GHz).

s[m]

0.75 . : : : —
& collisional presheath —»
£ 05 W
=] collisonlessregion
—= 0.25} |

fixed boundary value n,
0

60 -

50f 1on
— 40}
d>‘i 30 electron
= 20}

10} upstream wall

O . .

g electron
& Ion \
E 4 -
= 3} fixedboundary value Q,
2. 2|
C 4]

O o5 1 15 2 25 3

s[m]
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Plasma profile in ERO simulation

§ Background plasma

T The divertor leg plasma is given by a 1D gE 80 r . ;
profile of a two-fluid model including inter- = = ¢ density
>
actions with neutral particles. s i 40(m
7 The perpendicular profiles to the center line '\E = 7| '=—velocity |elec. temp.
. . . . — 5720-,‘———_________:
of the divertor leg is given by a Gaussian E% Botential
shape, c 0 . : .
0 05 1 15 2
T(1) o« exp(12/2%), s[m]
. 04—
where characteristic length= 1cm. 0d ~ density

T Surface temperature is calculated from the T ool
Eo.

power load on the surface, o1 |l._surface temp> I
i ~700°C at max. l
)3/2. —_—

Qwall & NvT o< N(Te + T; 20302010 01020304
X [m]

§ Surface geometry
T Surface is defined by a fuctia{x).

T Only one surface is avialable in the current version.
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3. Gas puffing simulation

§ Background

T Sustained detachment has been achieved with the aid of strong H gas puffing.
core plasma, however, becomes low temperature due to the excess source.

T Neon and argon gas puffing is planed to expect larger radiation cooling and a [
liminary test has been carried out successfully.
§ Objectives
T Heavy ion causes large erosion of the divertor tiles even on tungsten.

T Understanding of transport of the ions and estimation of the erosion are necess
task for advanced LHD discharges in future.

0.8 —
0.6 1 ] ' 0.7} /
E 04 [ VAN 0.6 T
\.../% R & §0'5' core |
~° 02 N 0.4 plasm
. - 03 region
0 1 2 3 4 0.2}
time (8) 0.1t

Detachmenby strong hydrogen gas fiing 052010 0)2(1[ r%z 0.3 04 05
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Neon transport

§ Spatial distributions of neon atom and ions
+ Flow rate of the neon gas: 1Pafm= 2.7 x 10?0 atoms/s in 300 K.

T The neon atoms are ionized immidiately and flow toward the divertor tile.

+ The friction force is dominant.

+ Significant fluxes of N&" and Né* are observed on the surface.

0.5—— 7 05
gas puffing 6

0.4 el — — 5 = - - - | o 04

E 0.3 'N/x' 4 0.3

N 0.2} \ 113 0.2
——Jt{ 2

01t 1]~ o1
Ne 1

o————0 0

-0.2-0.1 0.0.1 0.2
x [m]

edgéf
_____ . divertor |
- Nelt -
-0.2-0.1 0 .01 0.2

X [m]

04 05

0.35

03 04

1 0.25 0.3}
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1 0.1 i
| 0.05 0.1

. - — - - - - e - - - =

Ne?t

0

-0.2-0.1 0 0.1 0.2
x [m]

COO00000000H

FPNOWRAOIOOYN00WO
neon density [10'° mJ]
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Erosion and redeposition of tungsten

§ Erosion distribution of W tile along x-axis
T Erosion by Ne bombardmenrt15nm/s for 1 Pafs.
T Erosion by W bombardment, i.e. self-sputtering, is not significant in this case.

§ Redeposition distribution of W tile along x-axis
T The dfective erosion rate is around3lof the pure erosion rate.

T Deposition region is observed outside the erosion region.

=
N

< 1ol ‘Ne—| ¢ 12 erosion —

E 12 Ne+t\W — :% " 10 fredeposition —

5 ghlomms D | 8% 8[womus. /NN __

o ! @)

C\é) 4 [ ! ‘—_ < 4 X |

— 2t s S 80 ol centér of

S | epiasna s 5 _ th(_aplglasma _

@ -165 -160 -155 -150 -145%T g5 -160 -155 -150  -145
@ X [mm] X [mm]

We note that the distribution can change fdfelient cross-field diusion coefficient.

No diffusion in this simulation.
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Influence of different gas species

§ Helium, neon and argon puffing simulation

T Erosion due to helium is negligibly small for the plasmalef~ 30eV because of
the higher energy threshold.

T Argon erodes tungsten two times more than neon.

T The peak shift is caused by the higher ionization rate which makes ionizations
shallow position in the leg.

T lonization energy
He: 24.6eV, Ne: 21.6eV, Ar: 15.8eV.

0.5——— [ &
@ 3 _ _ _ gas puffing I6 =
5 2 [He x100— | oA s
= 2.9] Ne — 5 &
=2 neTe[aAl\Jr] T =5 03 4 =
5 15 < 0_2._\ 3 2
— 1 \ ' —[12 &
- 05_ ‘~s~ | Ol' O ©
2 L \F Ne 1l <
O Qleess — o—>——— U 3
o -165 -160 -155 -150 -145 -02-01 0 0102 <

X [mm] X [m]
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Perpendicular diffusion of impurity

§ Impurity distribution with constant diffusion coefficient
o5 ~ ' AT T T
- (@) D=0 m?/s 1 I (b) D=0.1 m?/s 1 I (c) D=0.2 m?/s
o4 — T T —— N N —
I y. I p. I y,
T 0.3[ 1 I
é F - - 4 F
N 0.2:__\\L 1T 1T
0.1f 1T 1T )
0 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
X [mm] X [mm] X [mm]
§ Erosion distribution
. . 1.2e+15
T Large dtfusion causes less
: le+15}
erosion. =)
. . . S 8e+l4d}
1 Diffusion model for the di- ¢
: S Ge+ld}
vertor leg is necessary. S
_ _ _ B de+laf
T Plasma modeling with diffu- § rer1a
e 5
sion is also important. .
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oD
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4.Summary

§ LHD divertor modeling for ERO
1 Plasma and wall cofigurations

1 1D plasma modeling by two fluid equations

§ Gas puffing simulation

T Upper limit of erosion and redeposition rate were estimated.

1 Effect of impurity diffusion was studied.

§ Future issues
1 Diffusion codficient model of impurity in the divertor leg.
1 Advanced plasma modeling with EMC3.
= extension of the simulation grids to the legs

T Integration of ERO and EMC3
Impurity source
ERO | - ~ | EMC3-EIRENE

plasma profile
SOL and leg

(local) (global)
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