ヘリカル核融合炉概念設計と プラズマ運転制御シナリオ検討

<u>後藤 拓也</u>、柳 長門、濱口 真司、田村 仁、田中 照也、 宮澤 順一、坂本 隆一、相良 明男、FFHR設計グループ 核融合科学研究所 核融合工学研究プロジェクト

第17回若手科学者によるプラズマ研究会 2014.3.5-7、日本原子力研究開発機構 那珂核融合研究所

ヘリカル系=無電流プラズマ

- ヘリカル=外部導体のみで閉じ込め磁場を形成する 環状閉じ込め装置=無電流プラズマ
 - ≻ディスラプションがなく定常運転が容易
 - ▶ 定常電流駆動が不要で<u>自己点火(Q無限大)</u>運転が可能
- ヘリオトロン=ヘリカルコイル+ポロイダルコイル
 - ▶比較的シンプルなコイル・プラズマ形状

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 2/21

ヘリカル核融合炉FFHR-d1の概念設計活動を 2011年度より開始

- 核融合研におけるLHD型へリ カル核融合炉の設計活動
 - ▶ 1990年代半ばの "force-free" コンセプト提案が発端
 - ▶LHD実験の成果を受け設計の 改良を継続
 - ▶ FFHR-2m2: 30年運転を前提とした商用炉提案

Figure from A. Sagara et al., Fusion Eng. Des. 85 (2010) 1336.

● FFHR-d1 は設計のロバスト性、建設の実現可能性、安全性などの強化を目指したFFHRの *"Re-design"*

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 3/21

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 4/21

直接分布外挿(<u>Direct Profile Extrapolation</u>)法 Core により炉心プラズマの予測性を向上 TG

J. Miyazawa et al., Fusion Eng. Des. 86 (2011) 2879, Nucl. Fusion 52 (2012) 123007.

lation from I UD /#115707 + = 2 00

✓ FFHR-d1設計の最大の特徴

✓ Gyro-Bohmモデルに基づきLHD実験結果を 炉条件に直接外挿

	ISS(国際ステラレータ則)	DPE(直接分布外挿)	6	to FFHR-d1 (B _{reader} = 5.16 T, R _{reader} = 14.2 r 50 40 n b b c c c c c c c c c c
径方向分布	分布形状を仮定(放物分布)	実験データをスケールして利用	(10 ¹⁹ m	30 20 10
	$n(\rho) = n_0 (1 - \rho^2)^{\alpha_n}, T(\rho) = T_0 (1 - \rho^2)^{\alpha_T}$	$n(\rho) = f_n n_{\exp}(\rho), T(\rho) = f_T T_{\exp}(\rho)$	(keV) ($\begin{array}{c} \mathbf{T} \\ \mathbf{T} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{T} \\ $
パワー バランス	プラズマ形状および体積の 情報が必要	分布形状から積分		5 LHD
	$W_{p} = rac{3}{2} \langle n \rangle \langle T \rangle V_{p}$	$W_p = f_R^3 f_n f_T \frac{3}{2} \int_0^1 n_{\exp}(\rho) T_{\exp}(\rho) \left(\frac{\mathrm{d}V}{\mathrm{d}\rho}\right)_{\exp} \mathrm{d}\rho$	(%)	$\begin{array}{c c} & \beta & \\ \hline & & \\ 5 & \\ \end{array} \begin{array}{c} \beta & \\ \hline & \\ \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
閉じ込め 性能	経験則による評価 $\tau_E = H^{ISS} \tau_E^{ISS}$	実験結果をジャイロボーム則で 外挿		$P_{e_norm} \xrightarrow{\text{Reactor}} Y_{DPE} = 1.14$
		$\tau_E = \gamma_{\text{DPE}^*} f_a^{2.4} f_R^{0.6} f_B^{0.8} f_P^{-0.6} f_n^{0.6} \tau_{E,\text{exp}}$		

 $X_{\text{reactor}} = f_X X_{\text{exp}} \text{ for } X = T(\rho), \ n(\rho), \ P(\rho), \ B, \ R$ $f_P = \gamma_{\text{DPE}*}^{-2.5} f_\beta^{2.5} f_B^3 f_n^{1.5} \quad f_R^3 f_n^2 \int_0^1 (P'_\alpha - P'_{\text{rad}}) (dV_p / d\rho)_{\text{exp}} d\rho = f_P P_{\text{exp}}$

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 5/21

システムコードHELIOSCOPEにより 設計領域解析を実行

T. Goto et al., PFR 7 (2012) 2405084.

- *j*_c=25 A/mm², *H*/W=2を仮定。
- 工学条件として $W_{mag} \le 160 \text{ GJ}$ およ $\mathcal{V} < \Gamma_{nw} \ge 1.5 \text{ MW/m}^2$ を採用。
- *R*_c=15.6 m, *B*_{t,c}=4.7 T を設計候補 点として選択。
- _{Δ_{c-p} (コイル・プラズマ間最小距離) :89cm}

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 6/21

70cm のブランケット設置空間をメンテナンス時にも確保

T. Tanaka et al.,

24th IAEA Fusion Energy Conference, Oct. 8-13, 2012, San Diego, USA, FTP/P7-36. H. Tamura *et al.*, Fusion Eng. Des. **88** (2013) 2033.

核発熱による温度上昇および圧力損失が許容範囲であることを確認

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 8/21

	ヘリカル核融合炉FFH	R-d1の				
基本設計パラメータが確定						
A. Sagara et al., Fusion Eng. Des., 87 594 (2012), T. Goto et al., PFR 7 2405084 (2012).						
	<i>R</i> _c =15.6m <i>, B</i> _c =4.7T,					
	Helical coil major radius B and com,	15.6				
	Plasma major radius $R_p = 1.5 MW/m^2$	14.4				
	Helical pitch parameter $\gamma_{\rm c}$	1.2				
	Plasma volume $V_p[m^3]$	1878	_⊯ =70cm			
	Average toroidal field at the winding center $B_{t,c}[T]$	4.7				
	Central electron density $n_{e0}[10^{20}\text{m}^{-3}]$	2.5				
	$central control a temperature T_{e0}[keV]$	10.5				
	$\beta_0 \beta_0 \beta_0 \beta_0 \beta_0 \beta_0 \beta_0 \beta_0 \beta_0 \beta_0 $	10.0				
	Faster Paul P fus [GWth]	3.0				
	Confinement improvement factor $\gamma_{\rm DPE}$	full cover				
	Helical coil current density j_{c} [A/mm ²]	TBR01.15				
	Maximum magnetic field on helical coil $B_{max}[T]$	<i>q</i> ₁ 0.∳mW/cc				
後藤拓也、	Average neutron wall load < $\Gamma_{ m nw}$ >[MW/m ²] ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子	1.5 -力機構那珂研、201	4.3.5-7) 9/21			

設計の第2ラウンドが現在進行中

- 炉心プラズマの詳細物理

第2ラウンド(2011年度-)
 - 炉内機器の3次元設計

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 10/21

炉内機器の3次元基本形状を数式により定義

真空容器、ブランケットのヘリカルコイル垂直断面 (ξ-η 平面)における形状をヘリカルコイル角θの関数で定義

メンテナンス性の確立が設計の鍵

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 12/21

- 適切な磁場配位の選択と垂直磁場の制御により、MHD平衡、新 古典輸送、アルファ粒子閉じ込めが整合した運転点を選択可能。
- 一方で整合性あるシステム設計のためには定常運転点に至るまでのプラズマ運転制御シナリオの確立が必要。
- 過去の解析は0次元 → 1次元モデルにより分布の効果を検証

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 13/21

LHD実験結果に基づく簡易モデルを活用し 1次元計算コードを開発

*R. Sakamoto *et al.*, Nucl. Fusion **52** (2012) 083006.

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 14/21

計算の前提条件

● 圧力分布:

- > 高アスペクト比、磁気軸内寄せ配位で 比較的ピークした電子密度分布のデー タ(LHD実験 #115787@3.90s: D 255m D 10T 10)たD 15(m)
 - $R_{ax,vac}$ =3.55m, B_{ax} =1.0T, γ_{c} =1.2)を R_{c} =15.6m, B_{c} =5.6T に外挿
- 磁気面構造:
 - ▶上記実験データに対応した有限ベータ 平衡計算結果をスケールアップ
- 燃料供給(ペレット):
 - ▶<u>粒子数4×10²²</u>(r_p~6 mm)を想定
 - ▶入射速度: <u>1.5 km/s</u>
- 加熱パワーの100% 吸収、不純物0を仮定。
 後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 15/21

プラズマ分布の変化が制御性に影響

核融合出力3GWの自己点火燃焼領域への 到達および定常維持を達成

外部加熱 (~30 MW) 印加により 低出力での運転も可能

シンプルかつ少数の計測により ロバストな制御が実現可能

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 19/21

まとめ

- 核融合研核融合工学研究プロジェクトの下、ヘリカル核融 合炉FFHR-d1の概念設計活動が進展。
 - ▶ LHD実験成果および過去の設計活動の工学的知見を生かし 基本設計パラメータを確定。
 - ▶ 建設およびメンテナンス手法の確立を視野に入れた炉内機 器の3次元設計と、炉心プラズマの詳細物理解析が進行中。
- プラズマ運転制御シナリオの確立に向け、1次元コードを用 いた解析を実行中。
 - ▶ 少数のシンプルな計測による安定した制御の実現可能性を 確認(<u>無電流へリカル系のメリットのもうひとつの側面</u>)。
 - ▶ 今後より詳細な解析を継続し、周辺機器(計測・加熱・燃料供給)やプラント機器(熱輸送・発電系)の詳細設計につなげる。

後藤拓也、ヘリカル炉概念設計と運転シナリオ、(第17回若手研究会、原子力機構那珂研、2014.3.5-7) 20/21