

核融合科学研究所 田中照也

核融合ブランケット/遮蔽体候補材料第17回若手科学者によるプラズマ研究会/NIFS/田中照也

3/17

SlimCS / JAEA Tokamak

Table 1 Design parameters of SlimCS.

Major radius, R _p	5.5 m
Minor radius, a	2.1 m
Aspect ratio, A	2.6
Plasma current, I _p	16.7 MA
On-axis magnetic field, B _T	6.0 T
Maximum field, B _{max}	16.4T
Elongation, K ₉₅	2.0
Plasma volume, V _p	941 m ³
Temperature, T _e	17.0 keV
Density, n _e	$1.15 \times 10^{20} \text{ m}^{-3}$
Normalized beta, β_N	4.3
Fusion output, P _{fus}	2.95 GW
Neutron wall load, P _n	\sim 3 MW/m ²

SlimCSのトリチウム増殖 ブランケットと高温遮蔽体*

Li₄SiO₄/

Be₁₂Ti

Be

1.1

0.1

Li4SiO4/

Be₁₂Ti

- - -

0.2

SlimCS / 固体ブランケット設計例

(中性子壁負荷5MW/m²)

液体ブランケットの構造

G. Barrera et al., Fusion Engineering and Design 83 (2008) 6-20

EU-DEMO HCLL(LiPb/He冷却)

S. Hermsmeyer et al, Fusion Engineering and Design 75–79 (2005) 779–783.

EU-DEMO HCPB モジュール取り付け (個体/He冷却)

(a)

液体ブランケット 構造案の例

P. Norajitra et al., Fusion Engineering and Design 69 (2003) 669-673.

EU-DEMO DCLL (LiPb/He+LiPb**冷却**)

F. Najmabadi et al., Fusion Engineering and Design 80 (2006) 3–23.

ARIES-AT (LiPb/自己冷却)

ブランケット厚みとトリチウム増殖比

増殖層厚みと局所TBR (Tritium Breeding Ratio)の関係の例

第17回若手科学者によるプラズマ研究会/NIFS/田中照也 ブランケット設計例 (田中調べ)									
	固体 / 水	固体/ He	Li-Pb/ 水	Li–Pb / He	LiPb / 二重冷却	LiPb / 自己冷却	Flibe/自 己冷却	Li/自己 冷却	
T増倍材 ⁶ Li濃縮	$\begin{array}{c} \text{Li}_{2}\text{TiO}_{3},\\ \text{Li}_{4}\text{SiO}_{4},\\ \text{Li}_{2}\text{ZrO}_{3}\\ 90\% \end{array}$	Li ₂ TiO ₃ Li ₄ SiO ₄ 30-60%	Li-Pb 90%	Li-Pb 90%	Li-Pb 90%	Li-Pb 90%	Flibe 天然- 40%	Li 天然- 35%	
固体増 倍材	Be, Be ₁₂ Ti	Be	なし	なし	なし	なし	Be	なし	
構造材	FS	FS	FS	FS	FS/SiC	SiC	FS	V合金	
温度(°C)	290-360	250-500	-325	300-500	460-700	650-1100	400-550	330-610	
発電効率	~ 35 %	~ 40 %	~ 33 %	43.7 %	44 %	58.5 %	~ 38 %	46 %	
冷却材 圧力、 流速	25 MPa 5.3 m∕ s	8 MPa	15.5MPa (水)	8 MPa	8 MPa 40 m∕s (He,FW)	1 MPa 4.2 m/s (FW)	1.5 MPa 1.5 m∕s (FW)	1 MPa 0.41m/s (FW)	
共存性 (腐食)	×	$O(\Delta)$	×	×	×	0	O 但しTF	Δ	
安全性	破断放出	-	破断放出	Pb,耐震	Pb,耐震	Pb, 耐震	Be, フッ化物	発火性	
構造	複雑	複雑	複雑	複雑	やや複雑	単純	やや単純	単純	
厚み(cm) IB/OB	35/45	41/51	55/85	 65/95* *マニホールド含	51/86	35/75	32 **FFHR2	20/50 56**	

(Magnet)

(Magnet)

液体ブランケットのニュートロニクス環境

(中性子壁負荷1.5MW/m²、30年運転)10/17

第17回若手科学者によるプラズマ研究会/NIFS/田中照也

遮蔽に関する設計目標値の例

材料中における中性子輸送

鉄+水による中性子遮蔽

炉の基本パラメーター設定への影響

・増殖ブランケット 50-60cm、 遮蔽体 50-60cm (トカマクでは真空容器(鉄+水)も遮蔽機能をもつ) さらに、冷却材配管分岐(マニフォールド)、ブランケット-遮蔽体間ギャップ 真空容器、熱シールド、コイルとのギャップ を考えると 最低でも1.2mはほしい。 ブランケット選択、コンポーネント設計の幅、尤度を 持たせる観点からも、より広い空間を。

・設計によっては、インボード側のスペースがこれより小さい。
 →アウトボード側のスペースに余裕があれば、
 そちらに厚めのブランケットを置いて、TBR確保等を目指すが、
 設計要素がぎりぎりのせめぎあいになることが多い。

・ブランケットタイプや遮蔽体材料の選択によっては、
 より狭いブランケット+遮蔽体空間を目指せる可能性があるが、
 現状では、採用のためにさらなる材料・システム研究が求められる。