

Tokyo University of Agriculture and Technology

第17回若手科学者によるプラズマ研究会

次世代宇宙開発にむけたヘリコンプラズマスラスタの研究

 Space Propulsion and AeroDynamics Engineering Laboratory

 西田浩之,中村隆宏,篠原俊二郎(東京農工大)

 船木一幸(JAXA宇宙研)

 羽田亨(九州大)

谷川隆夫(東海大)

背景 一次世代宇宙開発一

オリオン(NASA)

太陽発電衛星

- これまでにない大規模な軌道間輸送が必要
- ▶ 高推力・高比推力(燃費)・長寿命な宇宙推進システム が必要

背景 一電気推進一

電気推進

電力により推進剤にエネルギーを与え、高速で排気 ⇒ 推力

- 電熱加速:アークジェットスラスタなど 静電加速: イオンエンジンなど
- 電磁加速: MPSスラスタなど
- 化学推進と比べ低い推力,そして高い比推力(燃費)

静止衛星の姿勢制御などの長時間にわたる運用、深 宇宙探査や大規模軌道間輸送など、長距離長時間に わたる宇宙ミッションでの活躍

Typical electric propulsion systems

電気推進の実用例 -HAYABUSA(イオンエンジン)-

小惑星ITOKAWAへのサンプルリター ンミッション

μ-10 イオンエンジン

- 長時間・長距離にわたるミッションでの電気推進の信頼性と有 用性を実証
- 大型化・大電力化により、電気推進の可能性はさらに広がる

電気推進の課題 ー電極損耗による寿命制限ー

プラズマと放電電極・加速電極が接触

- 放電とプラズマ加速による電極損耗 ⇒ 寿命制限
- 電極のスパッタによるコンタミネーション ⇒ 性能の低下

無電極電気推進の研究

無電極電気推進の研究開発 - 長寿命な電気推進システム-

VASIMR (Variable Specific Impulse Magnetoplasma Rocket) HDLT (Helicon Double Layer Thruster)

200 kW (推進効率70%以上, 推力5N, 比推力4000秒)

HELICON + Double Layer

HDLT (ANU)

ヘリコンプラズマ源を用いた無電極電気推進研究のプロジェクト

Booklet & Homepage

Frontline Scientific Research Projects Advanced in JAPAN

Newly Selected Large-scale Research Projects under FY2009 Grants-in-Aid for Scientific Research

Dr. Nishida

Japa

Dr. Shamrai

Dr. Funaki Prof. Tanikawa Prof. Hada

本研究の目標

Title of Project: Research and Development of a Novel Electrodeless Plasma Rocket Engine Using a Helicon Source

Y2009-2013

Shunjiro Shinohara (Kyushu University, Interdisciplinary Graduate School of Engineering Sciences, Associate Professor)

Research Area: Aerospace Engineering, Plasma Science Keywords: Propulsion/Engine, Plasma Applications, Aerodynamics

Helicon Electrodeless Advanced

plasma production and acceleration

電磁加速型ヘリコンプラズマスラスタの開発

auring the course of our project will lead to some novel concepts in developing a plasma engine for interstellar travel using interstellar plasma as a propellant and some spin-offs, such as a completely electrodeless plasma processing system for manufacturing computer chips and an advanced-concept plasma incinerator for waste treatment.

[Publications Relevant to the Project]

· S. Shinohara, et al.: Development of High Density Helicon Plasma Sources and Their Applications, Phys. Plasmas 16, 057104 1-10

> on Source Exlectromagnetic ME/SAE/ASEE e & Exhibit -2007-5260. ousand Yen er Contact

sinohara/

スラスタコンセプト

目的

ヘリコンプラズマ源を用いた電磁加速型無電極電気推 進システムの開発が目標

- ヘリコンプラズマ源の開発
- 複数の加速方法(RMF加速・REF加速・PA/ICR加速)についての原理実証

数値シミュレーション/実験/理論解析

なぜヘリコンプラズマ源か?

<u>1. 高密度プラズマを幅広い外部制御パラメータで生成可能</u> > 10^{13} cm⁻³ w/ Flexible Operation <u>2. 様々なスケール・アスペクト比において高効率に生成可能</u>

 $D < 2.5 \text{ cm} \Rightarrow 74 \text{ cm}, V < 0.1 \text{ m}^3 \Rightarrow 2.1 \text{ m}^3$ cf. $D = 2.5 \text{ cm}, V = 23 \text{ cm}^3$ $A = L/D = 0.5 \Rightarrow 0.075$ (L = 5.5 cm, D = 74 cm)

ヘリコン波によるプラズマの生成効率と磁場による閉じ込め性能

ヘリコンプラズマ源 (ブルーモードのプラズマ)

電子密度:1.9(±0.1)×10¹⁷ m⁻³

 $2.1 (\pm 0.08) \times 10^{18} \text{ m}^{-3}$

Ar gass mass flow rate: 50 sccm RF power: 3 kW B field: over 1000 gauss Electron number density: 5.4×10^{12} cm⁻³

ヘリコンプラズマ源開発の実績

(A = 0.075)

 $D < 15 \text{ cm} \Rightarrow 74 \text{ cm}, V < 0.1 \text{ m}^3 \Rightarrow 2.1 \text{ m}^3$

<mark>東京農工大</mark> (2.5 cm[¢], > 4.7 cm^l)

東海大 New Antenna (20 cm^{\$}, 100 cm¹)

回転磁場型加速(1) ー加速の理論ー

Rotating Magnetic Field: Jones, 1979; Hugrass et al., 1980; Hoffman, 1998 etc

プラズマ中にRMFが浸透する条件は?

回転磁場型加速(2) ー磁場の浸透一

Plasma Radius /Skin Depth Hall Parameter

回転磁場型加速(3) -原理実証実験·

回転磁場型加速(4) -原理実証実験-

Space Propulsion and AeroDynamics Engineering Laboratory

回転電場型加速(1) ー加速原理と理論解析

回転電場型加速(2) ーシミュレーションと理論による原理実証ー

- 理論的定式化(電子流体モデル)
- Particle-in-Cell(PIC)シミュレーション
- 3流体プラズマシミュレーション
- ▶ 回転電場による周方向電子電流の生成を確認(数値的実証)
- ▶ 周方向電子電流の大きさを特徴づける無次元パラメータの一つを明示

Space Propulsion and AeroDynamics Engineering Laboratory

イオンサイクロトロン共鳴(ICR) & Ponderomotive 加速(PA)(1)

ICR + Magnetic Mirror

- VASIMR engine
- \perp heating || acceleration

Ponderomotive acceleration

- pure || acceleration
- less ion-wall loss

Ponderomotive Potential

$$\Phi(r) = \frac{q^2}{4m} \frac{E_{rf}^2(r)}{\omega^2 - \Omega^2(r)}$$

Flips sign at ω - Ω ® Ions can be accelerated unidirectionally

イオンサイクロトロン共鳴(ICR) & Ponderomotive 加速(PA)(2)

ロ実証実験の計画

Side View

End View 東海大学

まとめ

長寿命な大電力型プラズマスラスタの実現を目指し,無電極電磁 加速型ヘリコンプラズマスラスタの開発を行っている.

- スケーリング則も含め、大小様々なヘリコンプラズマ源の開発に成功、 電気推進への適用に十分な性能。
- 複数の加速方式(回転磁場型・回転電場型・ICR/PA型他)について,
 理論解析・シミュレーション・実験により原理実証のための研究を実施
 - 回転磁場型:FRCからのコンセプトにより,周方向電流の誘起メカ ニズムは明確.プラズマ加速の実証へ.
 - 回転電場型:シミュレーション,理論解析により原理実証,推力計 測によりその性能を評価.
 - CR/PA型:テスト粒子シミュレーションにより、粒子の加速原理を 確認.実証実験を準備中.

ACKNOWLEDGMENTS

The authors would like to thanks Takeshi Matsuoka, Fumiko Otsuka and late Prof. Kyoichiro Toki for his great contribution to this study.

This work was supported by the Grant-in-Aid for Scientific Research under Contact No. (S) 21226019 from the Japan Society for the Promotion of Science.