Magnetic nozzle plasma thruster ~ Helicon and Helicon MPD thruster ~

Department of Electric Engineering, Tohoku University Kazunori Takahashi

Collaborators: Prof Christine Charles and Prof Rod Boswell (Australian National University) Dr Trevor Lafleur (Ecopolytechnique) Prof Amnon Fruchtman (Holon Institute of Technology) Prof Michael A Lieberman (UC Berkeley) Prof Tamiya Fujiwara and Prof Koichi Takaki (Iwate University) Prof Akira Ando

Students in Iwate and Tohoku Universities

Here I would like to briefly review the results on the magnetic nozzle plasma thruster in Iwate University (2007-2012), in the Australian National University (sabbatical year 2010-2011), and in Tohoku University (2013-).

電気推進機 (プラズマ推進機)

<mark>化学推進機</mark>

化学燃料を燃焼し一気に噴射する 特徴:莫大な推進力(数千 kN). 燃料使用量が多い.

僅かな燃料 (Xe, Ar等)をプラズマ化し、イオンを電気的な力で加速することで、超高速で噴射

特徴:小さい推進力 (μN – 1 N). 燃料使用量が少ない.

Conventional electric propulsion

Magnetic nozzle

The magnetic nozzle seems to arise various types of plasma acceleration and momentum conversion mechanisms.

This work is aimed to fully understand the magnetic nozzle physics in the wide range of the parameters and develop a high performance plasma thruster.

The biggest problem called PLASMA DETACHMENT still remains future issue (we might need a big big big tank or space test.)

Thruster facilities in Sendai

HPT-I

60-cm-diam and 140-cm-length tank 500 l/s pumping speed Prf < 2 kW Electrodeless helicon thruster Individual measurement of thrust components

HITOP

70-cm-diam and 400-cm-length tank 1500 I/s pumping speed High power MPD power supply Lab test of MPD thruster

Mega-HPT

HPT-XS

14-cm-diam and ~50-cm-length tank 300 l/s pumping speed Prf < 2 kW MPD power supply (~ 100 J) Lab test of helicon MPD thruster

100-cm-diam and 200-cm-length tank 5000 l/s pumping speed. Prf < 10 kW Thruster test facility Pendulum thrust balance (working well). Target type force balance (working well now). Langmuir probes if needed. Pulsed solenoid power supply if needed. MPD power supply (same as HPT-XS) if needed.

PMPI (In Iwate)

Helicon plasma thruster

Basic laboratory experiments on helicon double layer and ambipolar fields

Current-free double layer / Ambipolar electric field

Charles and Boswell, APL2003 Takahashi et al, APL 2010

Particle Dynamics in spontaneous electric fields on axis

200

Ion beam profiles : plane double layer generates the collimated ion beam

Takahashi and Fujiwara, APL2009 Takahashi, Igarashi, and Fujiwara, APL2010

Ion beam is detached from the magnetic nozzle

Takahashi et al. JPD2011

20

PRL 107, 035002 (2011)

PHYSICAL REVIEW LETTERS

week ending 15 JULY 2011

Electron Energy Distribution of a Current-Free Double Layer: Druyvesteyn Theory and Experiments

Kazunori Takahashi,^{1,2,*} Christine Charles,¹ Rod W. Boswell,¹ and Tamiya Fujiwara²

¹Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia

²Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551, Japan (Received 7 April 2011; published 11 July 2011)

Takahashi, Charles, Boswell, and Fujiwara, Phys Rev Lett 2011

$$g_p(\varepsilon_e) = g_x \frac{n_e}{T_{\text{eff}}^{3/2}} \exp\left[-C_x \left(\frac{\varepsilon_e}{T_{\text{eff}}}\right)^x\right],$$

$$g_e(\varepsilon_e) = \varepsilon_e^{1/2} g_p(\varepsilon_e),$$

$$K_{iz}n_g\pi R^2 l = u_B(2\pi R^2 h_l + 2\pi R l h_R),$$

Ionization

Particle loss to the wall

I.D. = 13.7 cm, L = 25 cm

PMPI @ Iwate

Takahashi, Charles, Boswell, and Fujiwara, Phys Rev Lett 2011

1st direct measurement of the thrust imparted by the PM-HDLT

APPLIED PHYSICS LETTERS 98, 141503 (2011)

Direct thrust measurement of a permanent magnet helicon double layer thruster

K. Takahashi,^{1,a)} T. Lafleur,¹ C. Charles,^{1,b)} P. Alexander,¹ R. W. Boswell,¹ M. Perren,² R. Laine,² S. Pottinger,³ V. Lappas,³ T. Harle,³ and D. Lamprou³ ¹Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia ²ASTRIUM-EADS, 6 rue Laurent Pichat, 75016 Paris, France ³Surrey Space Centre, University of Surrey, Guildford GU2 7XH, United Kingdom

Pendulum thrust balance

(developed in Surry)

Laser displacement sensor

(Commercial product)

Permanent magnets-Helicon double layer thruster (developed in Iwate and tested in Canberra)

1st results of the thrust measurement: Bloody poor performance!!!!

Disappointed Poor performance 2.7 mN @ 900 W rf generator output 350 sec specific impulse

'Spontaneous' electrostatic acceleration does not impart a momentum

$$m_j \nabla \cdot (n_j \mathbf{v}_j \mathbf{v}_j) = q_j n_j (\mathbf{E} + \mathbf{v}_j \times \mathbf{B}) - \nabla \cdot \mathbf{P}_j$$

Fruchtman, PRL2006

Electron:
$$-eE_z = \frac{d}{dz}(p_e)$$

Ion: $eE_z = \frac{d}{dz}(mnu_z^2)$ $\frac{d}{dz}(p_e + mnu_z^2) = 0$

Thrust corresponds to the plasma momentum, which can be given by $(p_e + mnu_z^2)^*A$

The plasma momentum is conserved along the axis. When the free electrons overcome the potential drop, they give their energy/momentum to the potential drop.

The potential drop can give their potential energy to the ions.

Hence, the role of the double layer is the momentum conversion from the electron pressure to the ion dynamic momentum.

Thrust arising from the magnetic nozzle

electron:

$$-en(E_r + v_\theta B_z - v_z B_\theta) = \frac{\partial p_e}{\partial r},\tag{12}$$

$$-en(E_z - v_\theta B_r) = \frac{\partial p_e}{\partial r},\tag{13}$$

ion:

$$\frac{1}{r}\frac{\partial}{\partial r}(rmnu_r^2) + \frac{\partial}{\partial z}(mnu_zu_r) - \frac{mnu_\theta^2}{r} = en(E_r + u_\theta B_z), \tag{14}$$

$$\frac{1}{r}\frac{\partial}{\partial r}(rmnu_ru_z) + \frac{\partial}{\partial z}(mnu_z^2) = en(E_z - u_\theta B_r), \tag{15}$$

$$\frac{\partial}{\partial z}(p_e + mnu_z^2) = \underline{en(-u_\theta B_r + v_\theta B_r)} - \frac{1}{r}\frac{\partial}{\partial r}(rmnu_r u_z).$$

Lorentz force ($j_{\theta} x B_r$)

Axial momentum lost to the radial direction from the fluid cell

The local plasma momentum can be given by

$$T(z) = \iint (p_e + mnu_z^2) d\theta dr$$

Thrust expression

Cross-field diffusion effect on the magnetic nozzle term

A magnetic nozzle calculation of the force on a plasma

A. Fruchtman,¹ K. Takahashi,^{2,3} C. Charles,² and R. W. Boswell² ¹Faculty of Sciences, H.I.T. - Holon Institute of Technology, Holon 58102, Israel ²Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia ³Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551, Japan

The magnetic nozzle is 'mathematically' equivalent to the physical nozzle.

 \leftarrow

The thrust arising from the magnetic nozzle is again given as

$$T_B = -2\pi \int_{z_0}^z \int_0^{r_p} r \frac{B_r}{B_z} \frac{\partial p_e}{\partial r} dr dz \tag{1}$$

When assuming the plasma flows in the magnetic flux tube Φ with radius A(z) and the local field of B_z , i.e., $\Phi = B_z A(z) = const.$, and approximate the profile as $B_z(r, z) \simeq B_z(0, z)$, the T_B term can be written in one-dimensional model as

$$= \int \langle p_e \rangle dA \tag{3}$$

Equivalent to the physical nozzle thrust

The plasma velocity and density from the 1-D momentum equation

The equation drived from the plasma momentum equation,

$$\frac{\partial T_B}{\partial z} = \frac{\partial}{\partial z} \int_0^{r_p} 2\pi r (mnu_z^2 + p_e) dr$$

$$\simeq -\int \langle p_e \rangle A(z) \frac{1}{B_z} \frac{\partial B_z}{\partial z} dz,$$

$$= \int \langle p_e \rangle dA,$$
(4)

and the flux conservation and uniform axial velocity given by

$$\frac{\partial}{\partial z} (\langle n \rangle u_z A) = 0,$$
$$u_z(r, z) \simeq u_z(0, z)$$

gives the relation between the Mach number and the magnetic field strength as

$$\frac{M^2 - M_i^2}{2} - \ln\left(\frac{M}{M_i}\right) = \ln\left(\frac{A}{A_i}\right) = \ln\left(\frac{B_{zi}}{B_z}\right)$$
(5)

This is equivalent to the isentropic flow model in fluid dynamics.

Hence, the role of the electromagnetic force in the magnetic nozzle is equivalent to the physical wall

Inhibition of cross field diffusion in small laboratory device

Figure 2. Schematic diagram of the switching circuit of the solenoid current.

B_{z max} (kG)

3

Δ

000

5

×10¹¹

×10¹²

00

00

2

10

8

6

Figure 7. Radial profiles of the plasma density at z = 5 cm for $V_e = 0$ V (crosses), 100 V (open squares), 250 V (filled diamonds), and 400 V (open triangles).

Figure 1. (a) Schematic diagram of the experimental setup. (b) Calculated axial profile of the magnetic field B_z on axis for 5 A solenoid current (solid line), together with the measured one (filled squares) for 5 A dc solenoid current

Figure 4. Axial profiles of the plasma density for $V_e = 0$ V (filled circles), 50 V (filled diamonds), 100 V (open triangles), 150 V (filled squares), 200 V (open circles), 300 V (open diamonds), and 400 V (crosses).

Takahashi, Sato, Takaki, Ando, PSST 2013

How big are the solenoid coils for magnetic nozzle and helicon discharge?

Typical laboratory model of 1 kW helicon thruster

Consumed electric power

- RF power
 DC solenoid power
- Others (controller etc...)

~20-30% electricity and ~40 % weight are for the magnetic nozzle solenoids

- RF power supply
- Solenoid coil
- DC solenoid power supply
- Insulator source cavity
- Others

Light and no electricity

Performance of the helicon plasma thruster operated at Prf < 2 kW

Takahashi et al., PSST 2014

How can we improve the helicon thruster performance?

Inhibition of the plasma loss onto the radial source boundary might be key technology.

 \checkmark

Permanent magnet confinement, Modification of the physical boundary, Magnetic nozzle strength etc...

Target of operational range in power versus mass flow rate

Helicon MPD thruster

AF-MPD thruster

Gas flow rate	~0.1-0.5 g/sec for argon
	<0.1 g/sec for helium
Discharge power	a few 100kW (1msec pulse)
Magnetic field	~ a few kGauss
Thrust	several Newtons

Power is divided into production and acceleration. Electrode damage is serious issue.

Helicon thruster

Gas flow rate Discharge power Magnetic field Thrust

< 0.003 g/sec for argon several kW (CW) < a few kGauss several tens of mN

All of the power is coupled with plasma electrons. The electron pressure is converted into the ion dynamic momentum via a electrostatic and nozzle acceleration.

Helicon MagnetoPlasmaDynamic (MPD) thruster

Gas flow rate	< 0.01 g/sec for argon
Discharge power	less than kW (rf) + a few 100kW (dc pulse)
Magnetic field	< a few kGauss
Thrust	not investigated yet

RF power is coupled with electrons to produce the plasma. The MPD energy is divided into production and acceleration. The source can be operated with very low gas flow rate because the helicon plasma can trigger the MPD discharge even for the low pressure less than a few mTorr.

Configuration of helicon MPD thruster

FIG. 3: Plasma density at z = 15 cm as functions of (a) V_{MPD0} for $V_B = 250$ V and $m_{dot} = 6$ mg/s, (b) V_B for $m_{dot} = 6$ mg/s, and (c) m_{dot} for $V_B = 250$ V, where the two cases of $V_{MPD0} = 0$ V and 400 V are tested in Figs. 3(b) and 3(c). The dotted lines are added as vidual guides.

Flow velocity measurements by Mach probe and Time of Flight

The magnetic nozzle plasma thruster, which has been investigated in Iwate University, The Australian National University, and Tohoku University, is briefly reviewed.

Electrodeless Helicon Plasma Thruster, being a new type of electric propulsion device, is now just started being investigated vigorously.

- \checkmark The direct thrust measurement is firstly performed.
- ✓ The thrust imparted from the helicon thruster is arising from the electron pressure force onto the source and the Lorentz force due to the electron diamagnetic drift current and the radial magnetic field.
- \checkmark The performance of the helicon thruster is gradually increased in the last two years.

Helicon MPD thruster, being a new concept of the thruster, is now preliminarily tested by the small laboratory experiment.

- ✓ The similar performance to the applied field MPD thruster seems to be obtained with much lower gas flow rate as the high density helicon can trigger the MPD discharge in the low pressure argon.
- \checkmark The plasma density above 10²⁰ m⁻³ can be obtained at 10cm downstream of the thruster exit.