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This work was carried out using the HELIOS supercomputer system at International
IFERC-CSC  Fysion Energy Research Centre, Aomori, Japan, under the Broader Approach

collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA.
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Effects of toroidal rotation direction on heat transport

, rotation velocity
V,[10° m/s]
co

Previous studies: strong E. shear [ (Y W

* Core: the strong E, shear stabilizes cooia’]
turbulent transport

O Toroidal rotation: key to improve the energy
confinement in tokamak plasmas

plasma current
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-> formation of ITBs [H. Shirai NF1999, Rewoldt NF2002] 0 02 of4p036 08 1

* Pedestal: the steeper E, shear with co-toroidal rotation

-> improved confinement due to rotation [H. Urano NF2008, M.Honda NF2013]

Recent progress: inertial effects

* Interplay between toroidal rotation and flow shear is investigated using
gyrokinetic code GKW [Y. Camenen submitted to PoP]

 However, the effects on heat transport in experiments are not explained yet.

» Focus on JT-60U experiments with moderate E, shear in the core region

» Assess the inertial effects caused by toroidal rotation using GKW
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Effects of toroidal rotation observed in JT-60U

A. ITB plasma:
Steep gradient of T_-ITB with co rotation [N. Oyama NF2007]

B. Conventional H-mode plasma:

Independence of core heat transport from toroidal rotation [H. Urano NF2008]
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Rotation effects in GKW

* The following Vlasov equation is solved with the Poisson eq. and Ampere’s law
in a rigidly rotating frame.
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v’ Velocity of the co-moving frame: Q) = _oe ﬁ> YExB = (’_7 x 7@)/3 vanishes,
but v, g is finite, as well as €’.

ov

v" In this paper, only the Coriolis drift is considered, and the centrifugal drift is neglected.
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Both GKW and GS2 show that
the ITG/TEM mode is the fastest growing mode

Conditions
* Miller geometry *  0O<kyo<1
* Kinetic electrons * kp=0

Collision (pitch-angle scattering & energy diffusion)
w/o toroidal rotation

* Mainions & an impurity
*  Electromagnetic (B, &B )
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v' Good agreement between GKW and GS2 is obtained.




Rotation effects on the linear growth rate
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in the ITB plasma

ﬂelocitv of the co-moving frame €2
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A change in the linear growth rate 70

with the rotation direction in the ITB plasma
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v’ all cases (co, bal and ctr) have Q’ < 0.

v’ co -> bal -> ctr: Increase in y

=» agreement with the experiment

Conditions: G EQDSK, Kinetic electrons, Main ions & an
impurity, Electromagnetic (BL&B// ), kg0,=0.57, k,0.=0,
Collision (pitch-angle scattering & energy diffusion)
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Rotation effects on the linear growth rate
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in the conventional H-mode plasma
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v’ ydoes not depend on the rotation
direction.

=>» agreement with the experiment

Conditions: Miller, Kinetic electrons, Main ions & an
impurity, Electromagnetic (BL&B// ), kg0,=0.48, k 0.=0,
Collision (pitch-angle scattering & energy diffusion)



Rotation effects on the heat diffusivity
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in the conventional H-mode plasma

? QR [10° m/s]

Nonlinear simulations are
performed for the H-mode plasma.

Electron heat diffusivity x./x.z at 0=0.5
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Conclusions and future work

O Inertial effects caused by toroidal rotation on heat transport were examined using GKW.

The qualitative agreement with JT-60U experiments is obtained.

v ITB plasma:

* ychanges with the rotation direction. The difference is caused by
the magnitude of the rotation

v' Conventional H-mode plasma: _ . _
velocity and its gradient.

* ydoes not depend on the rotation direction.

* The heat diffusivities for both rotation directions are close to each other.

Future work

» The change in heat diffusivity is compared between the experiments and the
nonlinear simulations for the ITB plasma parameters.

» The effects of toroidal rotation are verified with other discharges.



