#### PANTAにおける 揺動解析

#### 九州大学総合理工学府 金 史良 挾間田 一誠

2016年3月14日 若手研究会

## 背景

プラズマ乱流は輸送を決定するためその理解と制御は重要

#### プラズマ乱流

静電的・・・イオン温度勾配モード、ドリフト波

電磁的・・・ MHD乱流、RF/ECH波動と乱流の相互作用



#### ドリフト波の モジュレーション T. Yamada *et al.,* Nature Phys. (2008)



#### ECHと乱流の 直接の結合

S. Inagaki *et al.,* Nucl. Fusion (2013)

直線磁場装置PANTA(Plasma Assembly for Nonlinear Turbulence Analysis)では乱流の詳細計測が可能

## 実験装置PANTA



- ヘリコン波放電 (3kW/7MHz)
- *B* ∼ 0.09T, *Pn* ∼ 0.8 mTorr

•  $n_e \sim 10^{19} {
m m}^{-3}$ ,  $T_e \sim 3 {
m eV}$ ,  $T_i \sim 0.3 {
m eV}$ 

2/15

・ ドリフト波が励起

#### 本発表について

#### PANTAにおける静電的・電磁的揺動の解析結果を発 表する

# ①静電的摇動

#### → 静電揺動の非線形結合の変化の観測

発表者:金

#### ②電磁的揺動 → イオンサイクロトロン周波数帯の揺動の同定 <sub>発表者:挾間田</sub>

## 1. 揺動の非線形結合変化の観測

# 2.イオンサイクロトロン周波数帯 揺動の同定

エンドプレートバイアス実験

4/15



バイアス印加により乱流構造が変化する

T. Yamada et al., Nucl. Fusion 54, 114010 (2015)

## 密度揺動のバイコヒーレンス



・ドリフト波のパワー、自己結合は減少
 ・イオン反磁性モードは高調波が出現、自己結合は増加

## 密度揺動のバイコヒーレンス



イオン反磁性モード-ドリフト波間の結合と イオン反磁性モード-高調波間の結合は周波数が同一で区別できない

## エンベロップ相関解析



### ノイズに埋もれた非線形波形の抽出

8/15

畳み込み平均 → ノイズを除去し、非線形波形の抽出が可能



イオン反磁性モードの波形は正弦波から孤立波形状(高調波の出現) →イオン反磁性モード-高調波間の結合は強くなる

### 1. 揺動の非線形結合変化の観測

# 2.イオンサイクロトロン周波数帯 揺動の同定

#### イオンサイクロトロン周波数帯の揺動

加熱に用いられる高周波の波(数10kHz~数MHz)と 輸送に係わるドリフト波(~数kHz)が結合することが示唆されている

S. Inagaki, et al., Nucl. Fusion 53 113006(2013)

9/15

PANTAでイオンサイクロトロン周波数帯の揺動を観測/Hz]



• 周方向のモードナンバーが0

#### ピーク周波数の磁場依存性

10/15



- 各パワースペクトルにスムージングをかける
- 30kHz付近のピークで強度の最大値を調べる
- 最大強度の半分の強度をもつ範囲を調べる
- 得た範囲で重み付け平均をとりピーク周波数
   とする

#### ピーク周波数の磁場依存性



- 磁場の増加に対してピーク周 波数の変化は小さく、減少する 傾向にある
- イオンサイクロトロン波では ないことが示唆される
- 密度も同時に変化していた

# 線形解析

#### 仮定:① $k_r$ =0, $k_{\vartheta}$ =0 ②電磁波 ③f=0.86 $f_{ci}$ \* $\omega_R = \frac{\Omega_e}{2} + \left(\left(\frac{\Omega_e}{2}\right)^2 + \omega_{pe}^2 + |\Omega_e\Omega_i|\right)^{1/2}$ $\omega_L = -\frac{\Omega_e}{2} + \left(\left(\frac{\Omega_e}{2}\right)^2 + \omega_{pe}^2 + |\Omega_e\Omega_i|\right)^{1/2}$

$$rac{\omega^2}{c^2 k_{\parallel}^2} = rac{(\omega+|\Omega_i|)(\omega-\Omega_e)}{(\omega-\omega_R)(\omega+\omega_L)}$$

The dispersion relation of R wave( $\omega \sim \Omega_i$ )

 $\omega = 2\Omega_i \left( \sqrt{1 + 4\omega_{pi}^2/k_z^2 c^2} - 1 \right)^{-1}$ 

$$\frac{\omega^2}{c^2 k_{\parallel}^2} = \frac{(\omega - |\Omega_i|)(\omega + \Omega_e)}{(\omega + \omega_R)(\omega - \omega_L)}$$

The dispersion relation of L wave ( $\omega \sim \Omega_i$ )  $\omega = \Omega_i (1 + \omega_{pi}^2 / k_z^2 c^2)^{-1}$ 

- 磁場:線形に依存
- 密度:プラズマ振動数を通して依存



R波:軸方向モード数0~1 L波:軸方向モード数2~ 3

上式とPANTAパラメータを使って記述した分散関係

## 線形解析との比較1

13/15



実験結果:右下に下がるほど周波数は減少 解析結果;右下に下がると周波数が増加

# 線形解析との比較2

|                                                | experiment | R                                                      | L                                          |
|------------------------------------------------|------------|--------------------------------------------------------|--------------------------------------------|
| Dispersion relation                            |            | $\frac{2\Omega_i}{\sqrt{1+4\omega_{pi}^2/k_z^2c^2}-1}$ | $rac{\Omega_i}{1+\omega_{pi}^2/k_z^2c^2}$ |
| Dependence on B                                | nonlinear  | linear                                                 | linear                                     |
| Dependence on <i>n</i>                         |            | through $\omega_{ hoi}$                                | through $\omega_{_{pi}}$                   |
| Azimuthal mode<br>num.                         | 0          | 0                                                      | 0                                          |
| Axial mode num.                                |            | 0~1                                                    | 2~3                                        |
| Radial wave num.<br><i>k<sub>r</sub></i> [m⁻¹] |            | 0                                                      | 0                                          |
| Fluctuation of B                               |            | exist                                                  | exist                                      |

- 密度を含めた解析でも再現できなかった
- 磁場に対する依存性は通常のイオンサイクロトロン波とことなる

<mark>外部で発生した電磁波</mark>がプラズマに<mark>浸透し</mark>てきたもの を観測したのではないか

まとめ

#### PANTAにおける特徴的な揺動の解析結果を示した

#### ①静電的摇動

# ドリフト波とイオン反磁性モードの非線形結合の変化をバイコヒーレンス解析、畳み込み平均等を用いて観測した

②電磁的摇動

イオンサイクロトロン周波数帯の揺動をパラメータスキャンを行い、スペクトル解析を用いて特徴づけた