球状トカマク TST-2 における低域混成波を 用いた非誘導プラズマ立ち上げ

辻井直人、矢嶋悟、高瀬雄一、江尻晶、冨樫央、吉田裕亮、 高橋航、戸井田和弥、山崎響、北山明親、佐藤暁斗、 武井悠稀、田尻芳之、松本直希、Benedikt Roidl

東京大学

第 20 回 QST 若手研究会 / 2017 年 3 月 6-8 日

球状トカマクにより効率の良い核融合炉を実現する ためには、中心ソレノイドを除去する必要がある

球状トカマク (Spherical Tokamak, ST) の非誘導運転シナリオ

低域混成 (Lower-Hybrid, LH) 波は高い電流駆動効率をもつ

- LH 立ち上げは JT-60U において実証済 [Shiraiwa 2004]
- → TST-2 で ST への有効性を評価

球状トカマクにより効率の良い核融合炉を実現する ためには、中心ソレノイドを除去する必要がある

球状トカマク (Spherical Tokamak, ST) の非誘導運転シナリオ

低域混成 (Lower-Hybrid, LH) 波は高い電流駆動効率をもつ

- LH 立ち上げは JT-60U において実証済 [Shiraiwa 2004]
- → TST-2 で ST への有効性を評価

実証炉クラスではSTでも2Tの磁場があるため、 $n_{\parallel} = 3 \text{ o LH} 波で効率の良い電流駆動が可能$

TST-2の磁場は最大で 0.16 T (電源の容量で制限)

 $\rightarrow 10^{18} \text{m}^{-3}$ にアクセスするには $n_{\parallel} > 4$ は必要

1 TST-2 装置

2 外側入射 LH アンテナを用いたプラズマ電流立ち上げ

TST-2装置

• $R_0 = 0.36 \text{ m}$

RF 立ち上げ

- $B_t < 0.16$ T
- 放電時間~80 ms
- $\bar{n}_e < 10^{18} \mathrm{~m^{-3}}$
- $I_p < 25 \text{ kA}$
- RF 400 kW @ 200 MHz

誘導 (OH) 立ち上げ

- $B_t < 0.3 \text{ T}$
- 放電時間~20 ms
- $\bar{n}_e < 2 \times 10^{19} \ \mathrm{m}^{-3}$
- $I_p < 120 \text{ kA}$

LH入射用に2台の静電結合型進行波アンテナが外側 (低磁場赤道面)と上側に設置されている

外側入射

- *n*_∥はダウンシフト
- 従来型

上側入射

*n*_{||}はアップシフト
 → 密度限界の上昇
 駆動効率は?

入射	電力	周波数
位置	(kW)	(MHz)
外側	200	200.1
上側	100	200.1

LH 波を用いて現在 25 kA までの非誘導プラズマ 立ち上げに成功している

トムソン散乱計測によると、電子温度はホローな分布 をしている

プラズマ電流の増加とともに密度も増加させなければ ならないことが分かった

- 固定磁場下では駆動可能な電流には最大値が存在する
- 外側入射の場合、最大磁場 0.16 T で 25 kA が限界

LH 電流駆動の評価には光線追跡/軌道平均 フォッカー・プランク計算*を用いた

*GENRAY/CQL3D [Smirnov 1994, Harvey 1992]

数値計算でも電流駆動には最適な密度が存在する

- 低密度:電流のキャリア(電子)が少ない
- 高密度: 波がプラズマ内部に到達できない
- *B_t*を増加させると最適密度、*I_p*ともに上昇する
- *I_p*の絶対値は 5-10 倍過大評価されている
 → 0 軌道幅が問題?

上側入射では n_{||} アップシフトのため、外側入射に 比べて LH 波の軌跡の密度依存性が弱い

12/17

上側入射では n_{||} アップシフトのため、外側入射に 比べて LH 波の軌跡の密度依存性が弱い

12/17

上側入射を行った放電では密度限界の上昇が 確認された

数値計算においても、上側入射を用いることで 駆動電流が上昇した

● 外側入射のみの場合、臨界磁場での駆動電流の計算値は47 kA

- 上側入射を用いると、駆動電流の計算値は常に >47 kA
- 駆動電流の絶対値は5倍程過大評価されている

- 非常に密度の低い領域での運転になるため、電流キャリア (電子)密度不足が問題となる
- 電流を増加させるには密度を増加させる必要があるため、
 近接性条件から磁場を増加させることが必須
- (実証炉クラスの磁場では問題なし?)
- 上側入射アンテナを用いることで、密度限界が上昇した
- 数値計算は定性的には実験結果と一致
- •計算された駆動電流は実験で観測された値の 5-10 倍

- 上側入射アンテナによる立ち上げの最適化
- シミュレーションにおける電流値の過大評価の原因の追求: マイクロ波散乱、偏光計、HXRアレー、有限軌道幅モデル

- 非常に密度の低い領域での運転になるため、電流キャリア (電子)密度不足が問題となる
- 電流を増加させるには密度を増加させる必要があるため、
 近接性条件から磁場を増加させることが必須
- (実証炉クラスの磁場では問題なし?)
- 上側入射アンテナを用いることで、密度限界が上昇した
- 数値計算は定性的には実験結果と一致
- •計算された駆動電流は実験で観測された値の5-10倍

- 上側入射アンテナによる立ち上げの最適化
- シミュレーションにおける電流値の過大評価の原因の追求: マイクロ波散乱、偏光計、HXRアレー、有限軌道幅モデル

- 非常に密度の低い領域での運転になるため、電流キャリア (電子)密度不足が問題となる
- 電流を増加させるには密度を増加させる必要があるため、
 近接性条件から磁場を増加させることが必須
- (実証炉クラスの磁場では問題なし?)
- 上側入射アンテナを用いることで、密度限界が上昇した
- 数値計算は定性的には実験結果と一致
- •計算された駆動電流は実験で観測された値の 5-10 倍

- 上側入射アンテナによる立ち上げの最適化
- シミュレーションにおける電流値の過大評価の原因の追求: マイクロ波散乱、偏光計、HXRアレー、有限軌道幅モデル

- 非常に密度の低い領域での運転になるため、電流キャリア (電子)密度不足が問題となる
- 電流を増加させるには密度を増加させる必要があるため、
 近接性条件から磁場を増加させることが必須
- (実証炉クラスの磁場では問題なし?)
- 上側入射アンテナを用いることで、密度限界が上昇した
- 数値計算は定性的には実験結果と一致
- •計算された駆動電流は実験で観測された値の 5-10 倍

- 上側入射アンテナによる立ち上げの最適化
- シミュレーションにおける電流値の過大評価の原因の追求: マイクロ波散乱、偏光計、HXRアレー、有限軌道幅モデル

- This work was supported by
 - ► JSPS KAKENHI Grant numbers 15K18303, and 21226021
 - NIFS Collaboration Research Program NIFSKOCR001, and NIFS12KUTR078
- This work used
 - MIT Plasma Science and Fusion Center Theory Group parallel computational cluster Loki
- Work at General Atomics is supported by US DoE contract DE-AC03-97ER-54411

- S. Shiraiwa, et al., Phys. Rev. Lett. 92, 035001 (2004)
- S. Tsuda, et al., Plasma Fusion Res. 10, 02064 (2015)
- A.P. Smirnov, et al., Bull. Amer. Phys. Soc. Vol. 39, No. 7, p. 1626, Abstract 4R11 (1994)
- R.W. Harvey, and M.G. McCoy, Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992
- J.C. Wright, et al., *Phys. Plasmas* **16**, 072502 (2009)

LH波はランダウ減衰により磁力線方向に電子を加速

- 2-3×v_{th}からv_{ph,max}で 電子を加速
- *v*_{ph,max} は近接性により制限
 高密度では *v*_{ph,max} が低下

これまでに3タイプのLHアンテナを制作・試験した

[
	誘導結合コムライン	導波管列	静電結合コムライン
	(ICC)	(Grill)	(CCC)
エレメント数	11	4	13, 6
	7	3-9	6.0, 4.7
電力 (FW)	200 kW	<100 kW	200 kW
偏光	poloidal	toroidal	toroidal
カップリング	40 %	40-50 %	100 %

• CCC アンテナにより最も多くの電力をプラズマに入射できた

● 現在 CCC アンテナは 2 台設置されている

これまでに3タイプのLHアンテナを制作・試験した

	誘導結合コムライン	導波管列	静電結合コムライン
	(ICC)	(Grill)	(CCC)
エレメント数	11	4	13, 6
	7	3-9	6.0, 4.7
電力 (FW)	200 kW	<100 kW	200 kW
偏光	poloidal	toroidal	toroidal
カップリング	40 %	40-50 %	100 %

• CCC アンテナにより最も多くの電力をプラズマに入射できた

● 現在 CCC アンテナは 2 台設置されている

LH 波の密度限界のため線平均電子密度は < 10¹⁸ m⁻³

- 現在の電源では B_t < 0.16
- パラメトリック崩壊不安定性: ω < 2ωLH

CIII放射の分光からトロイダルフローは小さい

ρ_{pol} > 0.7 において生成される高速電子は現在の パラメータでは良く閉じ込めることができない

22/17

全波計算*による予測は光線追跡と近い

23/17

プラズマ内部のLH波を直接計測できるマイクロ波 散乱計が開発中である

系方向輸送により、電流ホールは無くなり、 全駆動電流は減少する

下側入射では、より高磁場領域で電流駆動ができる

26/17

下側入射で理論的には駆動電流が増加する可能性がある

27/17

核融合炉へのスケーリング

- 1D ideal.: 速度空間1次元のみの解析
- ARIES-ST (*B*_{t0} = 2.1 T) には十分適用可能
- TST-2 では磁場が低いため理論値は~10¹⁸ A/m²/W
- 実験ではさらに1桁低い 駆動電流が飽和している

For densities much below the accessibility limit, the fast electron plateau level is proportional to the bulk density

- Current is carried entirely by fast electrons
- Current drive is saturated with sufficient RF power
- $\bullet\,$ High $v_{\rm ph}$ parts of the spectrum are accessible at lower density

Rays diffract and the driven current profile shifts radially outward as the density approaches the accessibility limit

