第5回若手科学者によるプラズマ研究会 2002年3月5日 日本原子力研究所 那珂研究所



#### 東北大学 大学院工学研究科 電子工学専攻

金子俊郎, 角山北斗, 多田栄司, 畠山力三



研究背景



フローシアーの役割が不明

磁力線平行・垂直フローシアーを 他の条件を均一にしたまま,独立に 生成・制御する必要性





議論ができない

#### 平行フローシアーによる不安定性の理論研究

|                            | 種類                  | 計算法 | 密度勾配 | 根号内符号 |
|----------------------------|---------------------|-----|------|-------|
| D'Angelo<br>(1965)         | KHI                 | 流体論 | 0    | ×     |
| Shukla<br>( <b>1995</b> )  | ドリフト波<br>+<br>イオン音波 | 流体論 | 0    | ×     |
| Ganguli<br>( <b>1998</b> ) | KHI<br>イオン音波        | 運動論 | ×    | 0     |

 $\omega = \omega^* + k_y v_{0y} + k_z v_{0z} \pm \sqrt{(\omega^*)^2 + 2k_z^2 v_s^2 - 2k_y k_z \frac{kT_e}{eB_0}}$ 





### 基礎実験分野

|               | 揺動の種類                  | 摇動励起                       | 摇動抑制     |    |
|---------------|------------------------|----------------------------|----------|----|
| Kent [1]      | ケルビンヘルムホルツ             | 電場シアー                      |          | 実験 |
| Jassby [2,3]  | ケルビンヘルムホルツ             | 電場シアー                      | 強い電場     | 実験 |
| Ganguli [4]   | イオンサイクロトロン             | 不均一電場                      |          | 理論 |
| Hojo [5]      | フルートモード                | 不均一電場                      | 電場シアー    | 理論 |
| Komori [6]    | フルートモード                | 不均一電場                      | 電場シアー    | 実験 |
| Tokuzawa      | 回転駆動フルートモード            | 電場                         |          | 実験 |
| Hojo [8]      | 回転駆動                   | 電場                         |          | 理論 |
| Koepke [9]    | 不均一エネルギー密度駆動           | 電場シアー                      |          | 実験 |
| Amatucci[10   | 不均一エネルギー密度駆動           | 電場シアー                      |          | 実験 |
| Sen [11]      | トロイダルドリフト波             | 負の電場曲率                     | 正電場曲率    | 理論 |
| Sen [12,13]   | 交換型フルートモード             | 負の電場曲率                     | 正電場曲率    | 理論 |
| Ganguli [14]  | ケルビンヘルムホルツ             | B <sub>  </sub> フローシ<br>アー | 電場シアー    | 理論 |
| Mase [15]     | ドリフト波モード               | 密度勾配                       | 電場       | 実験 |
| Sanuki [16]   | ドリフト波モード               | 密度勾配                       | 電場       | 理論 |
| Chaudhry[17]  | ドリフト波モード               | 密度勾配                       | 電場       | 理論 |
| Yoshinuma[18] | ドリフト波モード<br>ケルビンヘルムホルツ | 密度勾配<br>電場シアー              | 電場<br>電場 | 実験 |

※ 電場  $\Rightarrow$  E×Bドリフト回転, 電場シアー  $\Rightarrow$  E×Bドリフト回転周波数シアー



## 垂直フローシアーの従来研究

参考文献

- 1] G. I. Kent, N. C. Jen and F. F. Chen : Phys. Fluids 12 (1969) 2140.
- 2] D. L. Jassby : Phys. Rev. Lett. 25 (1970) 1567.
- 3] D. L. Jassby : Phys. Fluids 15 (1972) 1590.
- 4] G. Ganguli and Y. C. Lee : Phys. Fluids 28 (1985) 761.
- 5] H. Hojo, M. Shigeta and T. Watanabe : J. Phys. Soc. Jpn. 57 (1988) 711.
- 6] A. Komori, K. Watanabe and Y. Kawai : Phys. Fluids 31 (1988) 210.

7] T. Tokuzawa, A. Mase, A. Itakura, M. Inutake, K. Ishii and T. Tamano : Jpn. J. Appl. Phys. 33 (1994) L807.

8] H. Hojo: 核融合研究 65 (1991) 639.

9] M. E. Koepke, W. E. Amatucci, J. J. Carroll III and T. E. Sheridan : Phys. Rev. Lett. 72 (1994) 3355.

10] W. E. Amatucci, D. N. Walker, G. Ganguli, J. A. Antoniades, D. Duncan, J. H. Bowles, V. Gavrishchaka and M. E. Koepke : Phys. Rev. Lett. 77 (1996) 1978.

11] S. Sen and J. Weiland : Phys. Plasmas 2 (1995) 777.

12] S. Sen and R. G. Storer : Phys. Plasmas 4 (1997) 3731.

13] S. Sen, P. K. Sharma and D. Bora : Phys. Plasmas 5 (1998) 2637.

14] G. Ganguli, Y. C. Lee, P. J. Palmadesso and S. L. Ossakow : Geophys. Res. Lett. 16 (1989) 735.

15] A. Mase, J. H. Jeong, A. Itakura, K. Ishii, M. Inutake and S. Miyoshi : Phys. Rev. Lett. 64 (1990) 2281.

16] H. Sanuki : Phys. Fluids 27 (1984) 2500.

17] M. Chaudhry, H. Hojo, T. Watanabe and K Nishikawa : J. Phys. Soc. Jpn. 57 (1988) 3043.

18] M. Yoshinuma, M. Inutake, R. Hatakeyama, T. Kaneko, K. Hattori, A. Ando and N. Sato : Phys. Lett. A 255 (1999) 301.



# **Perpendicular Flow Shear**

## **Experimental Setup**





## **Segmented Hot Plate**



#### •Heated to 2300 K



Radial Profiles of  $n_e$ ,  $T_e$ ,  $\phi$ 

### $V_{H1} = -0.65 V, V_{H2} = 0 V$



 $V_{H3}$ =0 V throughout the present experiment.



## Radial Profiles of V<sub>f</sub>



Dependence on  $V_{H1}$ 

Dependence on V<sub>H2</sub>







## **Measurement of Ion Flow**





Graduate School of Engineering TOHOKU UNIVERSITY

## **Radial Profiles of Ion Flow Velocity**



値が正の場合, 上→下の方向へのフローを意味する



## Radial Profiles of I<sub>is</sub>



方向性プローブのコレクタ面をプラズマ源側に向けている





#### Electron Saturation Current

**Floating Potential** 



## Frequency Spectra of I<sub>es</sub>





### Frequency & Amplitude of Instabilities





Dependence on  $V_{H1}$ 

V<sub>H2</sub>=0 V B=1.6 kG



## Frequency & Amplitude of Instabilities

r=-2.5 cm



TOHOKU UNIVERSITY

Dependence on V<sub>H1</sub>

B=1.6 kG

## **Radial Profile of Amplitude**



 $V_{H1} = -0.65 V$ ,  $V_{H2} = 0 V$ , B=1.6 kG, f~20 kHz



## Radial Profiles of V<sub>f</sub>





## Frequency Spectra of I<sub>es</sub>



TOHOKU UNIVERSITY

## Frequency & Amplitude of Instabilities



## Frequency & Amplitude of Instabilities





## Dependence of $\Delta \theta$ on V<sub>H1</sub>

r = -2.7 cm



## **Radial Profile of Amplitude**







# **Parallel Flow Shear**

## **Experimental Setup**



#### Ions: Surface Ionization

Accelerated by the potential difference between the plasma and the ion emitter

#### Electrons: Thermionic Emission

Reflected by the grid and become Maxwellian velocity distribution

## **Parallel Flow Shear**

## **Experimental Setup**



## Ion Emitter



Segmented into three sectionsHeated to 2300 K

## **Electron Emitter**



## Radial Profiles of $n_e, T_e, \phi$



### **Plasma Parameter**

 $p = 6.0 \times 10^{-7}$  Torr B = 1.6 kG  $v_{te} = 2.6 \times 10^7 \text{ cm/s}$   $(T_e = 0.2 \text{ eV})$   $v_{ti} = 9.8 \times 10^4 \text{ cm/s}$  $(T_i = 0.2 \text{ eV})$ 

$$n_{e} \simeq 3.0 \times 10^{9} \text{ cm}^{-3}$$
  
 $\phi \simeq -3.0 \text{ V}$   
 $v_{i\parallel} = 2.2 \times 10^{5} \text{ cm/s}$   
 $(\epsilon_{1,2} = 1 \text{ eV})$   
 $\lambda_{D} = 0.01 \text{ cm}$   
 $(n_{e} = 10^{9} \text{ cm}^{-3})$ 

Graduate School of Engineering TOHOKU UNIVERSITY



V<sub>a</sub>< -10 V でプラズマ源の空間電位の影響が無くなっている



# Radial Profiles of $\mbox{ I}_{es}$ , $\mbox{ }_{f}$



$$V_{ie2} = 0.0 V$$



## Ion Energy Distribution

Energy distributions of ions parallel to the magnetic field





r=0 cm (correspond to the first electrode)





r=-2 cm (correspond to the second electrode)







## Radial Profiles of Ion Flow Energy



Graduate School of Engineering TOHOKU UNIVERSITY

## Frequency Spectra of I<sub>es</sub>





# Dependence of $\tilde{I}_{es}$ on $V_{ie1}$ , $V_{ie2}$



Dependence of  $\Delta \theta$  on V<sub>ie1</sub>, V<sub>ie2</sub>





# Dependence of $\tilde{I}_{es}$ on $V_{ie1}$ , $V_{ie2}$

r = -2.7 cm



周辺領域でも、 揺動は V<sub>iel</sub> に 依存している



Dependence of  $\Delta \theta$  on V<sub>ie1</sub>, V<sub>ie2</sub>

r = -2.7 cm



## **Radial Profile of Amplitude**



# Parallel & Perpendicular Flow Shear





### まとめ

分割型プラズマ源を用いて磁力線平行・垂直フローシ アーを生成・制御し, そのとき励起される揺動の詳細な 観測を行った

#### 平行フローシアー

平行フロー速度とそのシアーを系統的に制御すること によって、中心領域において、シアーの大きさに依存す るケルビンヘルムホルツ不安定性と、フロー速度に依 存するイオン音波不安定性と考えられる揺動を、周辺 領域においてドリフト波と考えられる揺動を、独立に区 別して観測することに成功した.

また、これらの不安定化条件から、フロー速度とそのシアーの各種低周波揺動への相乗的効果を初めて定量的に明らかにした.

垂直フローシアー

Qマシーンプラズマにおいても半径方向の電位分布を 制御することが可能となった. 周辺領域に局在して観 測された揺動はドリフト波であると考えられ, 中心領域 の径方向電場, すなわち垂直フローシアーによって抑 制されることが分かった. さらに, シアーを強くすると, 再び揺動が励起され, これはケルビンヘルムホルツ不 安定性に関係している揺動であると考えている.

なお, これらの揺動はさらにシアーを強くすると抑制されるなど, これまでの理論では説明できない現象が観測されている.