## カーボンダストの重水素リテンション

北大工 吉田肇

#### 1. 目的

- 2. 同時堆積カーボンダスト
  - (1) 実験方法
  - (2) 結果
  - (3) まとめ
- 3. 模擬ディスラプションで作製したカーボンダスト

   (1) 実験方法
   (2) 結果
   (3) まとめ
- 4. 結論

## 1.目的





これまでの評価 H/C~0.4 ← <u>黒鉛に重水素イオンを</u> 照射した時の飽和値

<本研究>

#### <u>2種類の模擬カーボンダストを作製</u>

|                                | 模擬試料の作製法               | 模擬事象      |
|--------------------------------|------------------------|-----------|
| 同時堆積<br>カーボンダスト                | 炭素電極を用いた重<br>水素アーク放電   | 正常運転時     |
| 模擬ディスラプショ<br>ンで作製した<br>カーボンダスト | 水素ガス下で、黒鉛に<br>電子ビームを照射 | ディスラプション時 |



<u>水素保持特性を評価</u>(基板温度、水素ガス圧依存性) 試料の特性評価(表面形態、結晶構造)

# 2. 同時堆積カーボンダスト



①試料の作製

・ 重水素アーク放電装置

<u>・ 放電中の全圧変化</u>



## 試料の作製条件

#### ※ ITERのダイバータ条件 1 Pa, 573 K程度

| 重水素流量 | 放電前圧力 | 放電中圧力 | 基板温度 |
|-------|-------|-------|------|
| (ccm) | (Pa)  | (Pa)  | (K)  |
| 80    | 22.5  | 1.3   | RT   |
| 80    | 22.5  | 1.3   | 423  |
| 80    | 22.5  | 1.3   | 573  |
| 80    | 22.5  | 1.3   | 673  |
| 40    | 15.3  | 0.5   | 573  |
| 1.0   | 0.2   | 0.05  | 573  |



・重水素保持量 → 昇温脱離分析 (TDS)







RT~1273 K 昇温速度 0.5 K/s

・試料の特性評価
 表面形態 → 走査型電子顕微鏡(SEM)
 結晶構造 → ラマン分光分析

結果 ① 昇温脱離スペクトルの一例



主にD<sub>2</sub>, HD, CD<sub>4</sub>, C<sub>2</sub>D<sub>4</sub>の形で脱離

2)昇温脱離スペクトルの基板温度存性



(※研究の進展により、今では基板温度依存性が得られています。 2003/2/26)





放電中の重水素ガス圧 大 → 重水素保持量 大



⑤ 同時堆積カーボンダストのSEM写真



$$P_{dis} = 0.05 \text{ Pa},$$
  
 $T_{sub} = 573 \text{ K} \quad 5 \,\mu \text{ m}$ 



#### いずれも微粒子の集合体

⑥同時堆積カーボンダストの

ラマンスペクトル





(3) まとめ

炭素電極を用いた重水素アーク放電 → 同時堆積カーボンダスト試料を作製

## <重水素保持特性>

- ・基板温度依存性 なし
- ・重水素ガス圧依存性 重水素ガス圧と共に、重水素保持量大

ITERダイバータ条件(1 Pa, 573 K) → D/C ~ 0.21

### <試料の特性>

- ・表面形態 微粒子の集合
- ・結晶構造 アモルファス ~ グラファイト-ライク

# 3. 模擬ディスラプションで作製した カーボンダスト



#### <u>高熱負荷電子ビーム照射装置</u>



## 試料の作製条件

#### ※ ITERのダイバータ条件 1 Pa, 573 K程度

| 水素ガス圧 (Pa) | 基板温度 (K) |  |
|------------|----------|--|
| 1.0        | RT       |  |
| 1.0        | 423      |  |
| 1.0        | 573      |  |
| 0.5        | 573      |  |
| 0.1        | 573      |  |



・重水素保持量 → 昇温脱離分析 (TDS)







RT~1273 K 昇温速度 0.5 K/s

・試料の特性評価
 表面形態 → 走査型電子顕微鏡(SEM)
 結晶構造 → ラマン分光分析

結果 ①昇温脱離スペクトルの一例



主に $H_2$ で脱離。 CH<sub>4</sub>の脱離は小さかった。



#### 基板温度依存性

#### 水素ガス圧依存性

差はない。







重水素ガス圧依存性(T<sub>sub</sub>=573 K)



ITERのダイバータ条件 (1.0 Pa, 573 K) → **H/C ~ 0.06** 

同時堆積カーボン ダストの約30%









 $P_{H2} = 0.1 Pa$ ,  $T_{sub}=573 \text{ K}$  $5 \mu m$ 

基板温度 大 → 微粒子の密度 大 水素ガス圧 大 → 微粒子サイズ 大



重水素ガス圧依存性

#### 基板温度依存性



いずれもアモルファスで、顕著な差は見られない。



水素ガス下で、黒鉛に電子ビームを照射 → 模擬ディスラプションでカーボンダストを作製

## <重水素保持特性>

- ・基板温度依存性 なし
- ・重水素ガス圧依存性 なし

ITERダイバータ条件(1 Pa, 573 K)  $\rightarrow$  H/C ~ 0.06

#### く試料の特性>

- ・表面形態 おおむね微粒子の集合
- ・結晶構造 アモルファス



## カーボンダストの水素保持特性

|                                | 基板温度<br>依存性 | 水素ガス圧<br>依存性  | <mark>水素濃度</mark><br>ITERダイバータ<br>条件(1 Pa, 573 K) |
|--------------------------------|-------------|---------------|---------------------------------------------------|
| 同時堆積<br>カーボンダスト                | なし          | 水素ガス圧<br>と共に大 | D/C ~ 0.21                                        |
| 模擬ディスラプショ<br>ンで作製したカー<br>ボンダスト | なし          | なし            | H/C ~ 0.06                                        |

※既存の評価 H/C~0.4

## 黒鉛に重水素イオンを照射した時の 重水素保持特性

