第7回 若手研究者によるプラズマ研究会 2004.03.17-19 於 日本原子力研究所 那珂研究所

トカマクおよびヘリカル型装置の周辺プラズマ における間欠的な密度揺動特性

Interm ittent Fluctuation Property of Edge Plasm as in Tokam ak and Helical Device

三好秀暁¹、大野哲靖²、高村秀一¹、上杉喜彦³、V P Budaev⁴ 朝倉伸幸⁵、三浦幸俊⁵、増崎 貴⁶、小森彰夫⁶

1. 名古屋大学大学院工学研究科

- 2. 名古屋大学理工科学総合研究センター
 - 3. 金沢大学大学院工学部
 - 4. クルチャトフ研究所
 - 5. 日本原子力研究所那珂
 - 6. 核融合科学研究所

背景

周辺プラズマ領域における熱・粒子輸送

プラズマ中に発生する様々な不安定性に起因する揺動

▶ 新古典理論に基づく輸送を上回る大きな拡散(異常輸送)

磁力線を横切る方向の輸送が増大するために プラズマの閉じ込め性能が劣化

磁場配位と輸送

プラズマ中の揺動は磁場構造に影響

トカマク型装置の断面磁場構造

軸対称であり比較的単純

ヘリカル型装置の断面磁場構造

非軸対称で複雑

トカマク型、ヘリカル型装置において観測された揺動の 統計的特性を求め、磁場構造による特性の違いを評価する。

大型ヘリカル型装置LHDにおける 揺動特性

大型ヘリカル型装置LHD

Specifications of LHD (2002)

Plasma Major radius Plasma Minor radius Plasma Volume Coil minor radius Magnetic field

3.5 - 4.0 m (mainly 3.6 m)
~ 0.6 m (average)
~ 30 m ³
0.975 m
~ 2.9 T (at R _{ax} =3.5m)

Heating power		
ECH	2.1	MW
N-NBI	10.0	MW
ICRF	2.4	MW

LHDの磁場構造

Inside of the LHD vacuum vessel (view from outboard port)

ダイバータ板へ接続する磁力線の結合長

解析結果(1)-Rax=3.750m-

<Isat> (mA)

放電波形(2)

SN: 45305, B = 2.750T, Rax = 3.600 m, Gas: H

マルチフラクタル性

マルチフラクタルの場合、単一のスケーリング指数Dでは表せない。

(q)=qH - $\lambda^2 q^2$ によりマルチフラクタル性を評価

磁力線の結合長による依存性

まとめと今後の課題 -LHD-

- ヘリカル型装置であるLHDの周辺部の揺動特性を評価した。 2種類の異なる磁場配位の放電について解析することにより、 周辺部へのプラズマの輸送と磁力線の結合長に関係があるら しいことが分かった。
- 次元解析より、LHDの揺動はマルチフラクタル性を有し、その特性は位置によって変化する。
- 今後は磁場計算の結果と併せて磁力線の結合長とプラズマの 輸送との関係を明らかにする必要がある。また、次元解析を さらに進めることで、揺動特性をより詳細に調べることが必 要である。
- 磁力線の結合長依存に関する更なる解析

JT-60Uにおける揺動特性

計測系(1)

静電プローブ(サンプリング周波数200kHz)

- ・水平面掃引プローブ、X点掃引プローブ
- ・ダイバータプローブアレイ
- D **発光(サンプリング周波数100kHz)**
 - ・ CH14 ダイバータ内側
 - ・ CH18 ダイバータ外側

計測系(2)

水平面およびx点に設置された掃引型マッハプローブにより 磁力線に沿った方向の流れが評価できる。

放電波形

SN : 41784 ELMy H-mode Discharge Da at ch14 and ch18 Distance from separatrix Mid-plane probe (down-stream)

解析結果 - Mid-plane, btw. ELMs-

標準偏差を平均値で規格化した揺動 レベルは周辺部で増加

ELM間の揺動特性は径方向の位置 により大きく変化することはない。

セパラトリクスに近づくにつれて イオン飽和電流の値は上昇

ELM 強度の評価方法

ELM 強度の径方向分布

<u> 規格化されたELM 強度はセパラトリクスから離れるにつれて増加</u>

まとめと今後の課題 -JT-60U-

- JT-60tの典型的なELMy H-mod 故電における揺動特性を評 価した。
- 径方向の分布に関して、イオン飽和電流はセパラトリクスに 近づくと共に値が増加するのに対して、揺動レベルおよび ELM 強度は周辺部ほど増加する。また揺動特性には大きな変 化は見られない。
- 水平面とX点との比較より、セパラトリクスから~60mmの 範囲では磁力線を横切る方向の輸送が特徴的であり、さらに 周辺部では磁力線に沿った方向の輸送が主である。
- 今後は更に高速サンプリング(1MHz)による計測および計 測系の改善により、ELM 間の揺動特性を詳細に調べる必要が ある。