プラズマ合体を用いた球状トカマク立ち上げ方法の比較・検討

河森 栄一郎^{a)}、住川 隆^{b)}

^{a)}東京大学高温プラズマ研究センター,^{b)}東京大学大学院新領域創成科学研究科

球状トカマク(ST)は小型さ、プラズマ外側端部での磁場構造等コンパクトトーラス(CT)との類似性を有す るー方、トカマクの安定性、良好な閉じ込めをも併せ持つ。しかし ST ではその構造上、中心部に十分なス ペースを確保できないことから DT 定常燃焼プラズマで必要とされる中性子遮蔽体を設置することができな い。そのため ST の燃焼プラズマを考えたときに次の様な課題が存在する。(1)中心変流器(OH コイル)を用 いた電流駆動、プラズマの立ち上げが行えない。(2)外部トロイダル磁場発生コイルに対して超伝導体が使 用できないため通常導体による中心導体電流発熱量が非常に大きくなる可能性がある。(1)のプラズマ生成・ 電流立ち上げに対して現在考えられている方法は、波動による電流駆動、同軸ガンによるヘリシティー注入 (CHI)、外側に位置するコイルを用いたプラズマ生成等がある。東京大学 TS グループではこれまでプラズマ 合体を用いた ST プラズマの生成法を、大きく分けて2種類提案、実証してきた[1]。Figure 1 にプラズマ 合体を用いた ST プラズマの生成法を、大きく分けて2種類提案、実証してきた[1]。Figure 1 にプラズマ 合体による ST 生成法の模式図を示す。一つは、2 つの低ベータ ST を中心導体軸対称に合体させ新たに高ベ ータ ST を生成する方法(Type A)であり、この手法は中型 ST 装置 MAST 等で実際に用いられている。もう一 つは、スフェロマック異極性合体により生成された超高ベータの逆転磁場配位 (FRC)に外部トロイダル磁場 を急速に印加する方法(Type B)である。この方法により生成された ST は非常に高いベータ値(体積平均ベー タ(β)_{volume} で 60-70%)を有し、バルーニング不安定に対し第二安定化領域に存在することがわかっている。 但しこの方法は印加する外部トロイダル磁場を急速に立ち上げなければならないことから、大型装置に適用

する場合電源等に対する要求が厳しくなるという弱点を 持つ。本研究では、これを克服する可能性のある、新た な高ベータ ST 生成法を提案し[2]従来の TS-3 装置を 3 倍大型化した TS-4 装置で実験的に試みた。その手法は、 外部トロイダル磁場印加中に CT の異極性合体を行うと いうもので、コンパクト逆磁場ピンチ(RFP)-低ベータ ST 合体により高ベータ ST 生成を行おうというものであ る(Type C)。磁気計測によれば、この手法により生成さ れた ST の $\langle \beta \rangle_{volume}$ は 30%程度に達した。但し現段階では、 低 q 領域の生成のみでしか高ベータ値が得られないこと 等本質的な問題が明らかになった。

(2)の問題に対する要求として、プラズマの安定性を 保ったままどこまで中心導体電流を下げられるか、言い 換えればプラズマ端部の q 値をどこまで小さくすること ができるかというものがある。今回 Type A の生成法に おいて中心導体電流 Itfc をスキャンして、生成される ST の安定性を調べた。実験によると、低 I_{tfc} 領域に初期 CT を生成できない領域があることがわかった ($I_{\rm tfc}$ = 0 kA の 場合スフェロマック生成になるため生成可能)。トロイ ダルモード計測から、この原因はクルスカルーシャフラ ノフ限界によるものであることが示唆された。生成可能 な I_{tfc} 領域において低次トロイダルモード不安定に対す る端部 q 値 q₉₅ 依存性を調べたところ支配的なモードは n=1, 2 であり、これらのモードは q₉₅ > 4 で安定化され た(Fig. 2)。この Type A の方法で安定に生成された ST では $\langle \beta \rangle_{volume}$ 8 %、規格化ベータ値 $\beta_N \sim 8$ であった。こ れらの結果から、Type A の合体により高ベータ ST を安 定に生成、維持するためのプラズマ端部 q 値の下限はお およそ4であることがわかった。

Fig. 1. The formation of an ST plasma using merging of two CTs.

Fig. 2. The growth rate γ_{growth} of the *n*=1 and *n*=2 mode are plotted as a function of q_{95} .

[1] Y. Ono, T. Kimura, E. Kawamori, Y. Murata, S. Miyazaki, Y. Ueda, M. Inomoto, A.L. Balandin and M. Katsurai, Nucl. Fusion 43, 789-794, (2003)

[2] M. Katsurai, M. Tsuruda, Y. Ono: "Overview of Compact Tori and Spherical Tokamak Researches with TS-3 and TS-4 Machines at University of Tokyo", Joint Meeting of the 3rd International Atomic Energy Agency Technical Committee Meeting on Spherical Tori and 8th International Spherical Torus Workshop, and US-Japan Workshop on Spherical Tokamak, PPPL, Princeton University, Princeton, NJ, U.S.A. (Nov. 2002).

e-mail: kawamori@katsurai.t.u-tokyo.ac.jp, sumikawa@katsurai.t.u-tokyo.ac.jp