ビーム放射分光法を用いた CHS における 周辺部輸送障壁形成時の MHD 不安定性計測

東大院・工,東大高温プラズマセ^A <u>大石鉄太郎</u>,門信一郎 ^A

Measurement of MHD Instabilities with Edge Transport Barrier Formation by using Beam Emission Spectroscopy in CHS

Graduate School of Engineering, The University of Tokyo High Temperature Plasma Center, The University of Tokyo^A <u>T.Oishi</u>, S.Kado^A

CHS 装置において, NBI の入射パワーP_{NBI} がある閾値 P_{thr} を超える時に,周辺部輸送障壁 (edge transport barrier:ETB)の形成を伴う遷移現象が観測されている [1].本研究では, ETB 形成時に,ビーム放射分光法(beam emission spectroscopy:BES)を用いて計測された MHD 揺動について報告する [2].

図 1 に, P_{NBI}が P_{thr} と同程度の場合の磁場揺動と密度揺動の経時変化を示す.(a)は磁場揺 動スペクトルであり,遷移前からフィッシュボーン不安定性に類似した 10~50kHz 程度の MHD 揺動(FB-like mode)が現れ,遷移後は5kHz程度の低周波揺動(LF mode)とFB-like mode が交互に現れることを示している.(b)は BES を用いて計測された周辺部(ρ=0.80~1.08)の密度 揺動スペクトルである.磁場揺動の LF と同期して,5~10%程度の揺動レベルをもった密度揺 動が周辺部で観測された.(c)は同じく BES を用いて計測された中心部(ρ=0.38~0.54)の密度揺

動スペクトルであり、この領域に FB-like な密 度揺動が存在することを示している.中心部で は、LF と同期した揺動も検出されているが、 周辺部の密度揺動によって中心部でのビーム 密度が変調を受け、信号の揺動となって現れて いる可能性がある.これについて、(b)に現れて いる LF が中心部でのビーム密度に及ぼす変調 を定量的に見積もった結果、この影響は(c)に現 れている LF の強度よりも有意に小さいことが わかった.したがって(c)中の LF はプラズマの 密度揺動によるものと考えられる.

一方, P_{NBI} P_{thr}の場合には, ETB 形成後に LF とその2倍の周波数のMHD 揺動が観測さ れており, これらの揺動の空間分布についても 解析を進めている.

[1] S. Okamura et al., J. Plas. Fus. Res. **79**, 977 (2003).

[2] T. Oishi et al., Rev. Sci. Instrum. 75, 4118 (2004).

図 1: (a)磁場揺動スペクトル,(b)周辺部の 密度揺動スペクトル,(c)中心部の密度揺動 スペクトル.左側はスペクトルの経時変化. 右側は 80~100 msec にわたりスペクトルを 平均したもの.